确实有想到重构树,不过没有继续下去的思路。

可能是对重构树的性质不太懂。

这种题目我们可以二分答案,考虑怎么\(check\)呢,整体二分+并查集,建出重构树,找去第一个小于这个数的方点,查询他的子树大小。

不过因为是两个点,要注意两点的满足性质的方点是同一个点的情况。

[AGC002D] Stamp Rally
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define N 200005 struct P{int to,s;ll v;}e[N]; inline bool operator < (P a,P b){return a.v < b.v;} ll n,m; ll tot; ll fa[N]; inline ll find(int x){return (fa[x] == x) ? x : fa[x] = find(fa[x]);} ll v[N << 1],head[N << 1],cnt; struct E{int to,next;}p[N << 2]; inline void add(int x,int y){
p[++cnt].to = y;
p[cnt].next = head[x];
head[x] = cnt;
} inline void build(){
ll cnt = 0;
tot = n;
for(int i = 1;i <= m,cnt < n - 1;++i){
int x = e[i].s,y = e[i].to;
int fx = find(x),fy = find(y);
if(fx == fy)
continue;
++tot;
add(tot,fx);
add(tot,fy);
v[tot] = e[i].v;
fa[tot] = fa[fx] = fa[fy] = tot;
++cnt;
}
} ll f[N << 1][30],siz[N << 1],dep[N << 1]; inline void dfs(int x,int fi){
f[x][0] = fi;
dep[x] = dep[fi] + 1;
if(x <= n)
siz[x] = 1;
for(int i = 1;i <= 24;++i)
f[x][i] = f[f[x][i - 1]][i - 1];
for(int i = head[x];i;i = p[i].next){
int v = p[i].to;
dfs(v,x);
siz[x] += siz[v];
}
} inline ll find_rt(int u,int x){
for(int i = 24;i >= 0;--i){
if(v[f[u][i]] <= x)
u = f[u][i];
}
return u;
} ll q; int main(){
scanf("%lld%lld",&n,&m);
for(int i = 1;i <= m;++i){
scanf("%d%d",&e[i].s,&e[i].to);
e[i].v = i;
}
for(int i = 1;i <= n;++i)
fa[i] = i;
std::sort(e + 1,e + m + 1);
build();
// puts("");
dfs(find(1),0);
v[0] = 0x3f3f3f3f;
scanf("%lld",&q);
for(int i = 1;i <= q;++i){
ll x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
ll l = 1,r = m,ans = 0;
bool flag = 0;
while(l <= r){
ll mid = (l + r) >> 1;
ll fx = find_rt(x,mid),fy = find_rt(y,mid);
// std::cout<<mid<<" "<<fx<<" "<<fy<<std::endl;
if(fx == fy)
flag = (siz[fx] >= z);
else
flag = (siz[fx] + siz[fy] >= z);
if(flag)
ans = mid,r = mid - 1;
else
l = mid + 1;
}
std::cout<<ans<<std::endl;
}
}

[AGC002D] Stamp Rally的更多相关文章

  1. 【做题】agc002D - Stamp Rally——整体二分的技巧

    题意:给出一个无向连通图,有\(n\)个顶点,\(m\)条边.有\(q\)次询问,每次给出\(x,y,z\),最小化从\(x\)和\(y\)开始,总计访问\(z\)个顶点(一个顶点只计算一次),经过的 ...

  2. [AGC002D] Stamp Rally 整体二分+并查集

    Description 给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小. Input ...

  3. [AGC002D] Stamp Rally (并查集+整体二分)

    Description 给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小. Input ...

  4. AtCoder Grand Contest 002 D - Stamp Rally

    Description We have an undirected graph with N vertices and M edges. The vertices are numbered 1 thr ...

  5. Stamp Rally

    Stamp Rally 最大值最小,可以二分,然后并查集看能不能到z个点 但是询问过多,并且发现每次二分要加入的点并不是所有的m条边 于是就考虑整体二分 并查集的处理是重点: 对于一般的dfs分治树, ...

  6. 【agc002d】Stamp Rally

    题目大意 无向图中,每次询问从x和y分别出发,一共经过z个点,使需要走过编号最大的边最小. 解题思路 对于暴力,我们对于每个询问二分答案ans,将1~ans的边加入,用并查集维护,如果x和y在同一个并 ...

  7. [agc002D]Stamp Rally-[并查集+整体二分]

    Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...

  8. Kruskal 重构树小记

    其实也不是多难的知识点吧--学了一个中午+半个下午就把它学会了(做过那道 jxd 作业 CF571D 的应该比较好理解) Kruskal 重构树大概就是在正常 Kruskal 的时候,对于两个需要连边 ...

  9. AtCoder Grand Contest 002

    AtCoder Grand Contest 002 A - Range Product 翻译 告诉你\(a,b\),求\(\prod_{i=a}^b i\)是正数还是负数还是零. 题解 什么鬼玩意. ...

随机推荐

  1. vue.$nextTick实现原理

    源码: const callbacks = [] let pending = false function flushCallbacks () { pending = false const copi ...

  2. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  3. [no_code][Beta] 中期组内总结

    $( "#cnblogs_post_body" ).catalog() 目前scrum meeting beta阶段目前共7次.在alpha阶段我们博客发布时间比较匆忙,是扣分项, ...

  4. .net,C#,Vb,F#,Asp,Asp.net区别以及作用和方向

    .net是平台,其他都是运行在其.NET FrameWork环境下的 C#,Vb都是语言运行在.net 平台下 Asp,Asp.net 都是用来写Web网页的,但是Asp和Asp.net有区别 Asp ...

  5. lib库无法加载的情况分析

    最近升级vs2017的时候遇到无法加载库的问题,在网上查找问题,网上给出可能有三种情况导致该问题:路径是否正确:库依赖是否齐全:库版本是否正确.最直接的方法就是用depends软件去查询,是否有模块有 ...

  6. SprinMvc快速入门

    1.spring mvc Spring MVC是Spring Framework的一部分,是基于Java实现MVC的轻量级Web框架. 查看官方文档:https://docs.spring.io/sp ...

  7. Python pip 和pip3区别 联系

    python 有python2和python3的区别 那么pip也有pip和pip3的区别 大概是这样的 pip是python的包管理工具,pip和pip3版本不同,都位于Scripts\目录下: 如 ...

  8. max-points-on-a-line leetcode C++

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. linux 内核源代码情景分析——越界访问

    页式存储管理机制通过页面目录和页面表将每个线性地址转换成物理地址,当遇到下面几种情况就会使CPU产生一次缺页中断,从而执行预定的页面异常处理程序: ① 相应的页面目录或页表项为空,也就是该线性地址与物 ...

  10. 跟着老猫来搞GO,集跬步而致千里

    上次博客中,老猫已经和大家同步了如何搭建相关的GO语言的开发环境,相信在车上的小伙伴应该都已经搞定了环境了.那么本篇开始,我们就来熟悉GO语言的基础语法.本篇搞定之后,其实期待大家可以和老猫一样,能够 ...