前言:本文仅仅是作者自己在学习过程中的一次实验而已,或许因为各种因素会导致实验结果与你之前的认知不太一样,因此请你带着批判的眼光看待本文(本文不具有实际环境的参考性)。

一:测试目的

在了解了一些NoSQL的知识之后,我发现Memcached是一个多线程的模型,对于一个NoSQL数据库,如果不考虑数据持久化功能(读写磁盘),剩余的内存操作应该是非常快的。但是多线程就意味着需要互斥和同步,锁是必须的,因此我设想多线程或许还会影响其性能而没有单线程快,这也是我为了验证自己的想法做的测试,因此也有了我标题中提到的我自己的项目 Kioskcached——一款单线程的简易key-value数据库

二:测试环境

OS : RedHat 7
Kernel : Linux version 3.10.0-514.el7.x86_64
CPU : Intel(R) Core(TM) i5 CPU M 520 @ 2.40GHz
Mem : 8G

//备注:除了测试三个数据库的QPS,我还使用Google的 gperftools 工具我的项目做了CPU PROFILER,找出了代码中占用CPU最多的函数,并考虑优化它。

三:测试过程及结果

1.Memcached

1:启动Memcached,使用默认大小64M就够了,我们存取的数据量大概是10M左右,(100B(key+value)*100000(nums) = 10M)。

2:测试代码如下:

https://github.com/yangbodong22011/kioskcached/tree/master/test/Memcached

3: 编译运行

$ g++ testFoot.cpp -lmemcached -lprofiler

$ ./a.out 100000 //插入10万条数据

测试得到 QPS 为: 33673.7

2.Redis

1:源码安装Redis之后,./redis-server启动Redis服务器

2:在src目录下有 redis-benchmark 可执行文件,这是官方自带的Redis性能测试工具。

$ ./redis-benchmark -h 127.0.0.1 -c 1 -n 100000 -d 100
-c : client的数量,1表示只有一个客户端
-n : 100000 : 表示10万次请求
-d : 100 : 表示一次数据量为100字节

3:测试结果

测试得到 QPS 为: 41631.97

3.Kioskcached

1:一款内存缓存型数据库,采用C/C++开发,网络库部分使用Redis源码,单线程IO多路复用模型避免了锁的争用,保证了操作的原子性。使用C++11 unordered_set管理内存数据结构。

2: Kioskcached的测试情况:

  • 当value的值为100字节时 : QPS = 316275

使用gperftools找出使用CPU前几位的函数为:

$ cat output.txt 

Total: 259 samples
34 13.1% 13.1% 56 21.6% std::_Hashtable::_M_find_before_node
21 8.1% 21.2% 22 8.5% _int_malloc
17 6.6% 27.8% 23 8.9% std::_Hashtable::_M_rehash_aux ...... 剩余的省略

输出结果说明(按照列数往下):

序号 说明
1 分析样本数量(不包含其他函数调用)
2 分析样本百分比(不包含其他函数调用)
3 目前为止的分析样本百分比(不包含其他函数调用)
4 分析样本数量(包含其他函数调用)
5 分析样本百分比(包含其他函数调用)
6 函数名
  • 当value的值为1000字节时 : QPS = 203203

使用gperftools找出使用CPU前几位的函数为:

Total: 426 samples
78 18.3% 18.3% 78 18.3% __read_nocancel
64 15.0% 33.3% 70 16.4% _int_malloc
28 6.6% 39.9% 57 13.4% std::_Hashtable::_M_find_before_node ...... 剩余的省略 可以发现与100字节相比较,此时read系统调用占用CPU已经成为了第一。
  • 当value的值为10000字节时

使用gperftools找出使用CPU前几位的函数为:

Total: 521 samples
102 19.6% 19.6% 102 19.6% __read_nocancel
79 15.2% 34.7% 83 15.9% _int_malloc
42 8.1% 42.8% 42 8.1% __GI_epoll_wait
29 5.6% 48.4% 52 10.0% std::_Hashtable::_M_find_before_node malloc 还是我们的难题和瓶颈。
...... 剩余的省略

3 : 总结
可以看出像:

_int_malloc
std::_Hashtable::_M_find_before_node
std::_Hashtable::_M_rehash_aux
__read_nocancel

这些都消耗非常多的CPU,要是优化的话先从它们入手,我自己可以处理的是mallocstd::_Hashtable::_M_find_before_node

四:改进方法

  • 重新找寻Hash函数,做适配替代目前的Hash函数。
  • 使用tcmalloc等第三方性能优于glibc ptmalloc的内存分配器。

[完]

Kioskcached(1)之 Memcached & Redis & Kioskcached 性能测试对比的更多相关文章

  1. Python自动化 【第十一篇】:Python进阶-RabbitMQ队列/Memcached/Redis

     本节内容: RabbitMQ队列 Memcached Redis 1.  RabbitMQ 安装 http://www.rabbitmq.com/install-standalone-mac.htm ...

  2. PostgreSQL单机、同步复制、异步复制性能测试对比

    测试环境: •测试机:PC •内存:8GB •CPU:Intel(R) Core(TM) i5-3450 3.10GHz •硬盘:HDD •数据量:20GB •测试工具:pgbench •Postgr ...

  3. [转帖]Docker五种存储驱动原理及应用场景和性能测试对比

    Docker五种存储驱动原理及应用场景和性能测试对比 来源:http://dockone.io/article/1513 作者: 陈爱珍 布道师@七牛云   Docker最开始采用AUFS作为文件系统 ...

  4. redis、rabitmq对比

    redis.rabitmq对比 原文地址 简要介绍 RabbitMQ RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性 ...

  5. tcmalloc jemalloc glibc内存分配管理模块性能测试对比

    tcmalloc是谷歌提供的内存分配管理模块 jemalloc是FreeBSD提供的内存分配管理模块 glibc是Linux提供的内存分配管理模块 并发16个线程,分配压测3次,每次压15分钟,可以看 ...

  6. sqlsugar freesql hisql 三个ORM框架性能测试对比

    hisql与目前比较流行的ORM框架性能测试对比 总体测试结果 插入记录数 hisql(耗时) sqlsugar(耗时) freesql(耗时) 5条 0.0107秒 0.0312秒 0.02675秒 ...

  7. c# sqlsugar,hisql,freesql orm框架全方位性能测试对比 sqlserver 性能测试

    在2022年1月份本人做过一次sqlsugar,hisql,freesql三个框架的性能测试,上次主要是测的sqlserver下的常规插入(非bulkcopy的方式数据插入),hisql与目前比较流行 ...

  8. memcached与redis实现的对比

    版权声明:本文由田京昆原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/129 来源:腾云阁 https://www.qclo ...

  9. 内存数据库:memcached与redis技术的对比试验

    本文以高性能nginx服务器为应用背景,想利用缓存技术来减轻系统负荷,加快响应时间,从而增加web服务器的吞吐量. redis是一种分布式内存数据库,memcached是一种内存缓存技术,它们都采用k ...

随机推荐

  1. Docker系列(26)- 发布镜像到阿里云容器服务

    1.登录阿里云 2.找到容器镜像服务 3.创建命名空间 4.创建镜像仓库 5.上传镜像

  2. Java学习之随堂笔记系列——day03

    内容回顾:1.标识符和类型转换    1.1 标识符:给类.方法.变量取得名字就是标识符.        命名规则:            1.必须是字母.数字._.$组成            2. ...

  3. python学习2-博客-蓝图

    #!/usr/bin/env python # -*- coding: UTF-8 -*- from flask import Blueprint,Flask #这里创建了一个名称为 'admin' ...

  4. YbtOJ#631-次短路径【左偏树,最短路】

    正题 题目链接:https://www.ybtoj.com.cn/contest/114/problem/1 题目大意 给出\(n\)个点\(m\)条边的一张无向图,对于每个点\(i\)求不经过\(i ...

  5. Docker小白到实战之Docker网络简单了解一下

    前言 现在对于Docker容器的隔离性都有所了解了,但对容器IP地址的分配.容器间的访问等还是有点小疑问,如果容器的IP由于新启动导致变动,那又怎么才能保证原有业务不会被影响,这就和网络有挂钩了,接下 ...

  6. Kettle学习笔记(四)— 总结

    目录 Kettle学习笔记(一)- 环境部署及运行 Kettle学习笔记(二)- 基本操作 kettle学习笔记(三)- 定时任务的脚本执行 Kettle学习笔记(四)- 总结 Kettle中设置编码 ...

  7. python自定义翻页配置

    1.创建pager.py文件,针对翻页进行函数书写 class PageInfo(object): # current_page 当前页数 # all_count 所有行 # per_page 每页的 ...

  8. 使用 PyTorch Lightning 将深度学习管道速度提高 10 倍

    ​  前言  本文介绍了如何使用 PyTorch Lightning 构建高效且快速的深度学习管道,主要包括有为什么优化深度学习管道很重要.使用 PyTorch Lightning 加快实验周期的六种 ...

  9. NOI 2021 部分题目题解

    最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...

  10. 题解 CF555E Case of Computer Network

    题目传送门 题目大意 给出一个\(n\)个点\(m\)条边的无向图,有\(q\)次有向点对\((s,t)\),问是否存在一种方法定向每条边使得每个点对可以\(s\to t\). \(n,m,q\le ...