题目

洛谷:P1115 最大子段和

LeetCode:最大子序和

给出一个长度为 \(n\) 的序列 \(a\),选出其中连续且非空的一段使得这段和最大。

挺经典的一道题目,下面分别介绍 \(O(n)\) 的 DP 做法、前缀和做法,以及 \(O(n\log n)\) 的分治做法。

DP 做法

用 \(d_i\) 表示结尾为位置 \(i\) 的最大区间和,则有

\[d_i=\max(d_{i-1},0)+a_i
\]

问题的答案即为 \(\max\{d_i \mid i\in[1,n]\}\)。

编写代码时不需要开 \(d\) 数组,用变量 last_d 记录 \(d_{i-1}\),变量 ans 记录 \(\max\{d_i\}\),并在扫描时动态更新即可。

时间复杂度 \(O(n)\),空间复杂度 \(O(1)\)。

核心代码如下:

maxn = int(2e5 + 5)
arr = [0 for _ in range(maxn)] # 从下标 1 开始存 # 输入过程略…… ans = None
last_d = 0
for i in range(1, n + 1):
temp_ans = max(last_d, 0) + arr[i]
if ans is None or temp_ans > ans:
ans = temp_ans
last_d = temp_ans
print(ans)

前缀和做法

将数列前 \(n\) 项的和记为 \(sum_n\):

\[sum_n=\sum_{i=1}^n a_i
\]

可以用前缀和快速求区间和:

\[\sum_{i=x}^y a_i = sum_y - sum_{x-1}
\]

用 \(d_i\) 表示结尾为位置 \(i\) 的最大区间和,则有

\[d_i=sum_i-\min\{sum_j \mid j<i\}
\]

问题的答案即为 \(\max\{d_i \mid i \in [1,n]\}\)。

编写代码时只需要开前缀和数组,无需开 \(d\) 数组,用变量 cur_min_pre_sum 记录 \(\min\{sum_j\}\),变量 ans 记录 \(\max\{d_i\}\),并动态维护即可。

时间复杂度 \(O(n)\),空间复杂度 \(O(n)\)。

核心代码如下:

maxn = int(2e5 + 5)
arr = [0 for _ in range(maxn)] # 原数组,从下标 1 开始存
pre_sum = [0 for _ in range(maxn)] # 前缀和数组 # 输入过程略…… # 预处理前缀和
for i in range(1, n + 1):
pre_sum[i] = pre_sum[i - 1] + arr[i] cur_min_pre_sum = 0
ans = None
for i in range(1, n + 1):
temp_ans = pre_sum[i] - cur_min_pre_sum
if ans is None or temp_ans > ans:
ans = temp_ans
cur_min_pre_sum = min(cur_min_pre_sum, pre_sum[i])
print(ans)

分治做法

若有一区间 \([start,stop)\),区间中点为 \(mid\),其最大子段和对应的子区间为 \([i,j)\),则 \([i,j)\) 只有以下三种情况:

  1. \([i,j)\) 完全在左子区间 \([start,mid)\) 内;
  2. \([i,j)\) 完全在右子区间 \([mid,stop)\) 内;
  3. \([i,j)\) 横跨中点 \(mid\)。

求出这三种情况下的值,取最大的即可。

前两种情况可通过递归求解,求解第三种情况需要一点技巧,方法是从中点出发分别向左右两边延伸

时间复杂度 \(O(n\log n)\)。

核心代码如下:

maxn = int(2e5 + 5)
arr = [0 for _ in range(maxn)] # 从下标 1 开始存 # 从位置 mid - 1 开始向左延伸的最大区间和
# 注:左子区间 [start, mid)
def mid_lmax(start: int, mid: int) -> int:
ans = None
cur_sum = 0
for i in range(mid - 1, start - 1, -1):
cur_sum += arr[i]
if ans is None or cur_sum > ans:
ans = cur_sum
return ans # 从位置 mid 开始向右延伸的最大区间和
# 注:右子区间 [mid, stop)
def mid_rmax(mid: int, stop: int) -> int:
ans = None
cur_sum = 0
for i in range(mid, stop):
cur_sum += arr[i]
if ans is None or cur_sum > ans:
ans = cur_sum
return ans # [start, stop) 的最大子区间和
def solve(start: int, stop: int) -> int:
if stop - start == 1:
return arr[start]
mid = (start + stop) // 2
only_lmax = solve(start, mid) # 完全在左子区间内
only_rmax = solve(mid, stop) # 完全在右子区间内
span_max = mid_lmax(start, mid) + mid_rmax(mid, stop) # 横跨中点
return max(only_lmax, only_rmax, span_max)

三种方法求解最大子区间和:DP、前缀和、分治的更多相关文章

  1. 使用三种方法求解前N个正整数的排列

    本篇博文给大家介绍前N个正整数的排列求解的三种方式.第一种是暴力求解法:第二种则另外声明了一个长度为N的数组,并且将已经排列过的数字保存其中:第三种方式则采用了另外一种思路,即首先获取N个整数的升序排 ...

  2. Java/JSP获得客户端网卡MAC地址的三种方法解析

    java/jsp获得客户端(IE)网卡MAC地址的方法大概有三种. 1.通过命令方式,在客户端执行Ipconfig 等等.(java/jsp) 2.通过ActiveX的方法.(jsp) 3.通过向13 ...

  3. 数组k平移三种方法(java)

    上代码,本文用了三种方法实现,时间复杂度不一样,空间复杂度都是o(1): public class ArrayKMove { /** * 问题:数组的向左k平移,k小于数组长度 * @param ar ...

  4. C#中??和?分别是什么意思? 在ASP.NET开发中一些单词的标准缩写 C#SESSION丢失问题的解决办法 在C#中INTERFACE与ABSTRACT CLASS的区别 SQL命令语句小技巧 JQUERY判断CHECKBOX是否选中三种方法 JS中!=、==、!==、===的用法和区别 在对象比较中,对象相等和对象一致分别指的是什么?

    C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...

  5. 像画笔一样慢慢画出Path的三种方法(补充第四种)

    今天大家在群里大家非常热闹的讨论像画笔一样慢慢画出Path的这种效果该如何实现. 北京-LGL 博客号@ligl007发起了这个话题.然后各路高手踊跃发表意见.最后雷叔 上海-雷蒙 博客号@雷蒙之星 ...

  6. JAVA之线程同步的三种方法

    最近接触到一个图片加载的项目,其中有声明到的线程池等资源需要在系统中线程共享,所以就去研究了一下线程同步的知识,总结了三种常用的线程同步的方法,特来与大家分享一下.这三种方法分别是:synchroni ...

  7. java解析xml的三种方法

    java解析XML的三种方法 1.SAX事件解析 package com.wzh.sax; import org.xml.sax.Attributes; import org.xml.sax.SAXE ...

  8. 【Android】Eclipse自动编译NDK/JNI的三种方法

    [Android]Eclipse自动编译NDK/JNI的三种方法 SkySeraph Sep. 18th  2014 Email:skyseraph00@163.com 更多精彩请直接访问SkySer ...

  9. DataTable数据批量写入数据库三种方法比较

    DataTable数据批量写入数据库三种方法比较 标签: it 分类: C#1)   insert循环插入:2)   sqldataadapter.update(dataset,tablename); ...

随机推荐

  1. Focal Loss(RetinaNet)笔记 一种减小类别不平衡影响的方法

    Paper: https://arxiv.org/abs/1708.02002 还参考了:https://www.jianshu.com/p/8e501a159b28 其中p是预测属于某类的概率.

  2. Cookie及通过Cookie常见应用

    会话的概念 会话可以简单理解为:用户打开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 会话需要解决的问题 每个用户与服务器进行交互的过程中,各自会有一 ...

  3. elasticsearch支持大table格式数据的搜索

    一.问题源起 数据情况 TableMeta, 保存table的元数据,通过fileId关联具体的GridFS文件: id name creator fileId 1 table1 mango f1 2 ...

  4. Docker 面试宝典

    Docker 是什么? 是实现容器技术的一种工具 是一个开源的应用容器引擎 使用 C/S 架构模式,通过远程API 来管理 可以打包一个应用及依赖包到一个轻量级.可移植的容器中 容器是什么? 对应用软 ...

  5. JS005. 拷贝引用数据类型Array使其指向不同堆的解决方案

    一个很常见的语法问题,但专注实现需求时经常会忘记去避免,导致最终问题的出现,再花时间排查.为此专门整理一篇解决方法的博客,也加强一下自己的记忆. TAG: JSON.parse() JSON.stri ...

  6. JDK7&JDK9处理异常新特性

    1.JDK7新特性是在 try (定义对象,作用域就是try方法体) 复制一个文件实例: 复制文件的原理: 先从硬盘写出到内存中,创建文件输入流对象 FileInputStream fis; 中间是在 ...

  7. [CVE-2020-1956] Apache Kylin远程命令执行漏洞复现

    Apache Kylin是一个开源的.分布式的分析型数据仓库,提供Hadoop/Spark之上的 SQL 查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由 eBay 开发并贡献至开源社区. ...

  8. logstash-input-jdbc配置说明

    Logstash由三个组件构造成,分别是input.filter以及output.我们可以吧Logstash三个组件的工作流理解为:input收集数据,filter处理数据,output输出数据.至于 ...

  9. [PhpStorm]解决Cannot find declaration to go to

    1.问题重现 使用单例模式访问类方法,PhpStorm提示类方法Cannot find declaration to go to 2.解决方法 加一句代码注释 注意:注释不能省略变量名 注:成员变量实 ...

  10. TP5 windows中执行定时任务

    1 首先先写个自定义命令文件 比如 Test 2 在网站根目录下建立文件 crond.bat ,内容:(把你在cmd上操作流程写一遍) D: cd workspace\wamp\tp5 D:\PHPW ...