正题

题目链接:https://www.luogu.com.cn/problem/P4233


题目大意

随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数。

对于每个\(n\in[1,N]\)求答案。

\(1\leq N\leq 10^5\)


解题思路

竟然自己推出来了泪目( Ĭ ^ Ĭ )

如果是统计所以的哈密顿回路个数是一个很简单的题目,我们可以求出\(n\)的一个圆排列表示一条回路,然后剩下的边随便排即可。也就是\((n-1)!\times 2^{\frac{n(n-1)}{2}-n}\)条哈密顿路,但是因为求的是期望所以我们还得求出有哈密顿回路的竞赛图个数,然后有一个结论就是如果一个竞赛图是一个强连通分量那么这个图就一定存在哈密顿回路。

这个是问题所在,我们可以考虑用城市规划的推法,设\(f_i\)表示\(i\)个点是强连通分量的竞赛图个数。

那么有

\[2^{\frac{n(n-1)}2}=2\sum_{i=0}^{n-1}2^{\frac{i(i-1)}{2}}f_{n-i}\binom{n}{i}
\]

但是注意\(n=0\)的时候要特别处理算出来为\(1\)。

化一下式子有

\[2^{\frac{n(n-1)}2}=2\sum_{i=0}^{n-1}2^{\frac{i(i-1)}{2}}f_{n-i}\frac{n!}{i!(n-i)!}
\]
\[\frac{2^{\frac{n(n-1)}2}}{n!}=\sum_{i=0}^{n-1}\frac{2^{\frac{i(i-1)}{2}}}{i!}\frac{2f_{n-i}}{(n-i)!}
\]

设\(F=\sum_{i=0}^{\infty}\frac{2f_i}{i!},G=\sum_{i=0}^{\infty}\frac{2^{\frac{i(i-1)}{2}}}{i!}\),那么有

\[G=FG+1\Rightarrow F=\frac{G-1}{G}
\]

上多项式求逆就可以求出\(f\)了。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=131072,M=N<<1,P=998244353;
ll n,fac[M],G[M],H[M],r[M],tmp[M];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=(p>>1),tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
void GetInv(ll n,ll *f,ll *g){
if(!n)
{g[0]=power(f[0],P-2);return;}
GetInv(n>>1,f,g);ll m=n<<1;
for(ll i=0;i<n;i++)tmp[i]=f[i];
for(ll i=0;i<m;i++)r[i]=(r[i>>1]>>1)|((i&1)?(m>>1):0);
NTT(tmp,m,1);NTT(g,m,1);
for(ll i=0;i<m;i++)
g[i]=(2*g[i]-tmp[i]*g[i]%P*g[i]%P+P)%P;
NTT(g,m,-1);
for(ll i=n;i<m;i++)g[i]=0;
return;
}
signed main()
{
scanf("%lld",&n);fac[0]=1;
for(ll i=1;i<N;i++)fac[i]=fac[i-1]*i%P;
for(ll i=0;i<N;i++)G[i]=power(2,i*(i-1)/2ll)*power(fac[i],P-2)%P;
GetInv(N,G,H);G[0]--;
NTT(G,M,1);NTT(H,M,1);
for(ll i=0;i<M;i++)G[i]=G[i]*H[i]%P;
NTT(G,M,-1);
for(ll i=1;i<=n;i++){
if(i==1){puts("1");continue;}
G[i]=G[i]*fac[i]%P;
if(!G[i]){puts("-1");continue;}
ll ans=fac[i-1]*power(2,i*(i-1)/2ll-i)%P;
printf("%d\n",ans*power(G[i],P-2)%P);
}
return 0;
}

P4233-射命丸文的笔记【NTT,多项式求逆】的更多相关文章

  1. 洛谷P4233 射命丸文的笔记 【多项式求逆】

    题目链接 洛谷P4233 题解 我们只需求出总的哈密顿回路个数和总的强联通竞赛图个数 对于每条哈密顿回路,我们统计其贡献 一条哈密顿回路就是一个圆排列,有\(\frac{n!}{n}\)种,剩余边随便 ...

  2. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  3. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  4. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  5. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  6. BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆

    不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...

  7. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  8. [BZOJ3456]城市规划:DP+NTT+多项式求逆

    写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...

  9. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

随机推荐

  1. 谷歌浏览器崩溃、电脑版微信,vscode打不开网页

    家里的电脑使用64位win7,谷歌浏览器直接打开页面都会提示页面崩溃,电脑版微信打开页面链接为空白,vscode打开发行说明或插件说明显示空白,这一系列的问题好像都跟浏览器器有关,之前找了很多文章,都 ...

  2. Synchronized和ReentranLock的区别

    1.底层实现上来说? Synchronized是JVM层面的锁,是Java关键字,通过monitor对象来完成. ReentranLock是API层面的锁底层使用AQS. 2.是否可手动释放锁? sy ...

  3. C# 中的CTS, CLS, CLR 的理解

  4. LeetCoded第206题题解--反转链表

    反转一个单链表. 示例 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 方法一:递归 自始至 ...

  5. 学习Java的9张思维导图

    转自:https://blog.csdn.net/aitaozi11/article/details/79652943 网上搜集了java的学习思维导图,分享给大家. 01.Java程序设计(基础) ...

  6. 如何配置https

    1.创建证书:keytool -genkey -alias wsria -keyalg RSA -keystore d:/keys/wsriakey 其中姓氏和组织名称为登录时的域名:如localho ...

  7. Oracle数据库 —— DDL

    时间:2016-10-5 14:55 逆风的方向更适合飞翔我不怕千万人阻挡只怕自己投降 --------------------------------------- 一.表的创建与管理1.表的基本操 ...

  8. 检测一个页面所用的时间的js

    window.onload = function () { var loadTime = window.performance.timing.domContentLoadedEventEnd-wind ...

  9. JavaScript——数组——slice方法

    JavaScript--数组--slice方法 JavaScript中的slice方法类似于字符串的substring方法,作用是对数组进行截取. slice方法有两个参数,indexStart 和 ...

  10. Sublime Text 快速分别独立选中多行

    效果图 直接上代码 import sublime, sublime_plugin # 独立选择每一行(在当前选中范围内) class SelectEverySingleLine(sublime_plu ...