P4245-[模板]任意模数多项式乘法
正题
题目链接:https://www.luogu.com.cn/problem/P4245
题目大意
两个多项式,求它们的乘积模\(p\)。
解题思路
方法好像挺多,我用的是最简单的一种就是,先定一个常数\(sqq\)(一般是\(\sqrt q\)),把一个项的数\(x\)拆成\(k*sqq+r\)。然后把\(F\)的\(k\)丢进\(A\),\(r\)丢进\(B\)。\(G\)的\(k\)丢进\(C\),\(r\)丢进\(D\)。
然后对于\(A*C\)的部分就是\(sqq^2\)的部分,\(A*D+B*C\)就是\(sqq\),\(C*D\)就是\(1\)。这样下来要跑\(7\)次\(\text{FFT}\),很慢但是能过,而且要开\(\text{long double}\)和预处理单位根不然会被卡精度。
有一个比较快的方法是变成两个复数多项式\(E[x]=A[x]+B[x]*i,F[x]=C[x]+D[x]*i\)(其中\(i\)表示\(\sqrt{-1}\))。然后乘起来做一下公式就可以做到\(3\)次\(\text{FFT}\)。
还有一个就是不会被卡精度的\(\text{NTT}\)方法,就是找三个有原根的模数分别跑出来,然后用\(\text{CRT}\)合并,这个跑的次数多,但是因为是\(\text{NTT}\)所以常数和第一个差不多?
时间复杂度都是\(O(n\log n)\)就是常数有不同而已
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const ll N=4e5+10,sqq=32768;
const long double Pi=acos(-1);
struct complex{
long double x,y;
complex (long double xx=0,long double yy=0)
{x=xx;y=yy;return;}
}A[N],B[N],C[N],D[N];
complex operator+(complex a,complex b)
{return complex(a.x+b.x,a.y+b.y);}
complex operator-(complex a,complex b)
{return complex(a.x-b.x,a.y-b.y);}
complex operator*(complex a,complex b)
{return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
ll n,m,p,F[N],G[N],H[N],r[N];
complex w[N];
void FFT(complex *f,ll op,ll n){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1;
for(ll k=0;k<n;k+=p)
for(ll i=k;i<k+len;i++){
complex tmp=w[n/len*(i-k)];
if(op==-1)tmp.y=-tmp.y;
complex tt=f[i+len]*tmp;
f[i+len]=f[i]-tt;
f[i]=f[i]+tt;
}
}
if(op==-1){
for(ll i=0;i<n;i++)
f[i].x=(ll)(f[i].x/n+0.49);
}
return;
}
void MTT(ll *a,ll *b,ll *c,ll m,ll k){
ll n=1;
while(n<=m+k)n<<=1;
for(ll i=0;i<n;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);
for(ll len=1;len<n;len<<=1)
for(ll i=0;i<len;i++)
w[n/len*i]=complex(cos(i*Pi/len),sin(i*Pi/len));
for(ll i=0;i<m;i++)
A[i].x=a[i]/sqq,B[i].x=a[i]%sqq;
for(ll i=0;i<k;i++)
C[i].x=b[i]/sqq,D[i].x=b[i]%sqq;
FFT(A,1,n);FFT(B,1,n);FFT(C,1,n);FFT(D,1,n);
complex t1,t2;
for(ll i=0;i<n;i++){
t1=A[i]*C[i];t2=B[i]*D[i];
B[i]=A[i]*D[i]+B[i]*C[i];
A[i]=t1;C[i]=t2;
}
FFT(A,-1,n);FFT(B,-1,n);FFT(C,-1,n);
for(ll i=0;i<n;i++){
(c[i]+=(ll)(A[i].x)*sqq%p*sqq%p)%=p;
(c[i]+=(ll)(B[i].x)*sqq%p)%=p;
(c[i]+=(ll)(C[i].x))%=p;
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&m,&p);
n++;m++;
for(ll i=0;i<n;i++)scanf("%lld",&F[i]);
for(ll i=0;i<m;i++)scanf("%lld",&G[i]);
MTT(F,G,H,n,m);
for(ll i=0;i<n+m-1;i++)
printf("%lld ",(H[i]%p+p)%p);
}
P4245-[模板]任意模数多项式乘法的更多相关文章
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
- [题解] Luogu P4245 [模板]任意模数NTT
三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说 ...
- 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...
- [洛谷P4245]【模板】任意模数NTT
题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 【知识总结】多项式全家桶(三)(任意模数NTT)
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
随机推荐
- java关键字native、static、final详解
native: native关键字说明其修饰的方法是一个原生态方法,方法对应的实现不是在当前文件,而是在用其他语言(如C和C++)实现的文件中.Java语言本身不能对操作系统底层进行访问和操作,但是可 ...
- 【js】--获取开始时间 和 截止时间中间的所有时间
1.工具函数 将[中国标准时间] 转换成 [年月日 时分秒] /* * timeStamp: 标准时间 例: 'Tue Sep 22 2020 00:00:00 GMT+0800 (中国标准时间)' ...
- 【springboot】集成Druid 作为数据库连接池
转自:https://blog.csdn.net/cp026la/article/details/86508139 1. 引言 用户的每一次请求几乎都会访问数据库,访问数据库需要向数据库获取链接,而数 ...
- Swagger2.X注解
常用到的注解有: 作用范围 API 使用位置 协议集描述 @Api 用于controller类上 协议描述 @ApiOperation 用在controller的方法上 非对象参数集 @ApiImpl ...
- C++继承体系中的内存分段
---------------综述与目录-------------- 讨论这个问题之前我们先明确类的结构,一个类的大概组成,下面的很多分类名词都是我个人杜撰,为的就是让读者看懂能够区分,下面分别分类: ...
- Mybatis--级联(一)
级联是resultMap中的配置. 级联分为3种 鉴别器(discrimination):根据某些条件采用具体实现具体实现类级联,如体检表根据性别去区分 一对一:学生和学生证 一对多:班主任和学生. ...
- Android WorkManager 定时任务
App有时可能需要定期运行某些工作.例如,可能要定期备份数据.上传信息到服务器,定期获取新的内容等等. 在app运行期间,我们使用Handler也可以完成定期的功能.在这里我们介绍WorkManage ...
- redis subscribe/publish(发布订阅)
redis的发布端 package dubbo.wangbiao.project.pubsub; import org.apache.commons.pool2.impl.GenericObjectP ...
- IDEA快捷键命令
Ctrl+Alt+T IDEl 抛异常快捷键ctrl +o 继承类时 继承方法快捷键Ctrl+Alt+左右方向键 回到上次光标停留的地方ALt +left/right 快速切换两个页面ctr ...
- rest operater剩余操作符
rest叫做剩余操作符(rest operator),是解构的一种,意思就是把剩余的东西放到一个array里面赋值给它.一般只针对array的解构 //rest叫做剩余操作符(rest operato ...