考虑对于$\{a_{i+1},...,a_{n}\}$,在其前面插入$a_{i}$对$x_{i}$的影响(不考虑$a_{1}$到$a_{i-1}$):

1.$x_{i}=0$,因为其前面没有数字了

2.若$a_{j}+Tx_{j}>a_{i}-T$,则令$x_{j}$加1(字典序最大)

3.若$a_{j}+Tx_{j}\le a_{i}-T$,则$x_{j}$不变

这些操作对于$j$而言是独立的,因此依次遍历$\{a_{j-1},a_{j-2},...,a_{1}\}$即可确定$a_{j}$

对于每一个位置$k$的每一个取值分别dp,设$f[i][j]$表示当遍历到$a_{i}$时$x_{k}=j$的方案数,最终答案即$\sum_{i=1}^{n}i\cdot f[1][i]$,再乘上之后有$k^{n-i}$种序列

时间复杂度为$o(n^{3}k^{2})$(枚举位置$n$,枚举权值$k$,dp状态$n^{2}$,转移$k$),可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define mod 1000000007
5 int n,m,t,ans,a[N][N],f[N][N];
6 int main(){
7 scanf("%d%d%d",&n,&m,&t);
8 for(int i=1;i<=n;i++)
9 for(int j=1;j<=m;j++)scanf("%d",&a[i][j]);
10 for(int i=1;i<=n;i++){
11 ans=0;
12 for(int j=1;j<=m;j++){
13 memset(f,0,sizeof(f));
14 f[i][0]=1;
15 for(int k=i;k>1;k--)
16 for(int l=0;l<n;l++)
17 for(int x=1;x<=m;x++)
18 if (a[i][j]+t*l<=a[k-1][x]-t)f[k-1][l]=(f[k-1][l]+f[k][l])%mod;
19 else f[k-1][l+1]=(f[k-1][l+1]+f[k][l])%mod;
20 for(int k=1;k<n;k++)ans=(ans+1LL*k*f[1][k])%mod;
21 }
22 for(int j=i+1;j<=n;j++)ans=1LL*ans*m%mod;
23 printf("%d\n",ans);
24 }
25 }

[atAGC048E]Strange Relation的更多相关文章

  1. 【原】使用Bmob作为iOS后台开发心得——云端代码添加其他User的Relation关系

    本文转载请注明出处 —— polobymulberry-博客园 问题描述 我在User表中增加了两个列,分别为“我关注的人”(Relation关系)和“我的粉丝”(Relation关系)当我关注某个人 ...

  2. Laravel学习--关于Relation的坑

    前段时间比较忙,就没有坚持写博客,但发现这周末再想捡起来,好难,一直到了今天晚上,才决定坐下来写一篇,哈哈哈-- 最近在用 Laravel 5.2,踩了几个关于 Relation 的坑,在这里用博客记 ...

  3. timus 1175. Strange Sequence 解题报告

    1.题目描述: 1175. Strange Sequence Time limit: 1.0 secondMemory limit: 2 MB You have been asked to disco ...

  4. CF719C. Efim and Strange Grade[DP]

    C. Efim and Strange Grade time limit per test 1 second memory limit per test 256 megabytes input sta ...

  5. HDU 1548 A strange lift (最短路/Dijkstra)

    题目链接: 传送门 A strange lift Time Limit: 1000MS     Memory Limit: 32768 K Description There is a strange ...

  6. ACM : HDU 2899 Strange fuction 解题报告 -二分、三分

    Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  7. 小谈pointer和relation

    在apicloud的数据库中,pointer和relation是在很难让人理解. 通过不断的实践,终于有点明白了. pointer和relation作用:在nosql数据库中实现表之间的关联 首先来说 ...

  8. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  9. A strange lift_BFS

    Problem Description There is a strange lift.The lift can stop can at every floor as you want, and th ...

随机推荐

  1. Go语言核心36讲(Go语言基础知识三)--学习笔记

    03 | 库源码文件 在我的定义中,库源码文件是不能被直接运行的源码文件,它仅用于存放程序实体,这些程序实体可以被其他代码使用(只要遵从 Go 语言规范的话). 这里的"其他代码" ...

  2. SQL SERVER数据库权限分配

    1,新建 只能访问某一个表的只读用户. --添加只允许访问指定表的用户:         exec     sp_addlogin     '用户名','密码','默认数据库名'           ...

  3. springboot事务的传播行为和隔离级别

    springboot事务的传播行为和隔离级别 在springboot中事务的传播行为和隔离级别都是在TransactionDefinition这个接口中定义的 传播行为定义了7种,分别用0-6来表示 ...

  4. 实用小工具:screen

    实用小工具:screen 首先,吹爆screen screen,实现了不间断的会话服务,通过SSH连接至远程服务器,当使用了screen开启的会话,不会因为你断开SSH而中断在远程服务器上运行的命令. ...

  5. Gopher们写if err != nil是否腻了?

    效果 go里面没有try catch,比较类似的有panic() 和 recover()机制,但是代价太大了,他们的场景更多使用在"程序异常,无法继续往下执行了这种场景",比如配置 ...

  6. BUAA 2020 软件工程 个人博客作业

    BUAA 2020 软件工程 个人博客作业 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 ...

  7. linux centos7 修改默认网卡命名规则为eth0脚本

    CentOS6之前基于传统的命名方式如:eth1,eth0.... Centos7提供了不同的命名规则,默认是基于固件.拓扑.位置信息来分配.这样做的优点是命名是全自动的.可预知的,缺点是比eth0. ...

  8. 2021.10.26考试总结[冲刺NOIP模拟16]

    T1 树上的数 \(DFS\)一遍.结构体存边好像更快? \(code:\) T1 #include<bits/stdc++.h> using namespace std; namespa ...

  9. 热身训练1 Game

    http://acm.hdu.edu.cn/showproblem.php?pid=5242 简要题意: 一棵树有n个节点,每个节点x有一个权值wi,我们要从根节点出发(不可回头),去收集每个节点的权 ...

  10. f(sinx)到底是啥

    总结一句:cosx是偶次就一定可以用.