「国家集训队」 Crash 的文明世界

提供一种不需要脑子的方法。

其实是看洛谷讨论版看出来的(

(但是全网也就这一篇这个方法的题解了)

首先这是一个关于树上路径的问题,我们可以无脑上点分治。

考虑当以 \(root\) 为根时,如何计算经过 \(root\) 的路径对某一个点的贡献。

若现在我们要找经过 \(root\) 的路径中长度为 \(d\) 且路径的一端为 \(u\)。

则这一部分的贡献为 \(v_{d}cnt_{d-h_u}\),其中 \(v_d=d^k\),\(h_u\) 表示点 \(u\) 的深度,\(cnt_i\) 表示深度为 \(i\) 的节点个数。

当然这里会有一种不合法的情况,就是找到的路径两端点在 \(root\) 的同一棵子树中。这可以用点分治惯用的容斥解决。

以 \(root\) 为根时,路径对点 \(u\) 的贡献为(事实上对深度为 \(h_u\) 的节点贡献是相同的)

\[\sum_{d=h_u}^{maxdeep+h_u}v_dcnt_{d-h_u}\\
\]

为了处理起来更加方便,我们增加一些无用的部分

于是有

\[\sum_{d=0}^{2\times maxdeep}v_dcnt_{d-h_u}\\
\]

令 \(n=2\times maxdeep\)。

\[\sum_{d=0}^{n}v_dcnt_{d-h_u}\\
\]

按照套路,将 \(cnt\) 数组翻转一下

\[\sum_{d=0}^{n}v_dcnt_{n-d+h_u}\\
\]

\[Ans_{n+h_u}=\sum_{d=0}^{n}v_dcnt_{n-d+h_u}\\
\]

这是一个卷积的形式,直接 \(\texttt{FFT/NTT}\) 即可。

所以总时间复杂度为 \(O(n\log_2^2n)\)。

(所以为啥不把这题的 k 开到和 n 同级呢)

下面讲讲常数优化:

  • 预处理原根、单位根必不可少。
  • 能不取模尽量别取模。
  • 由于这也是在分治的过程中进行 \(\texttt{FFT}\) 的计算,所以当规模较小时暴力会更快。

另外值得注意的是,由于本题的模数不是一个 \(\texttt{NTT}\) 模数,而中间过程中的结果最大可能为 \(10006^2\) ,所以我们可能得选择恰当的 \(\texttt{NTT}\) 模数。

这样的话结果就一定不会有问题。

这个题就这样非常套路地被我们解决了。

贴一个很丑的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+5;
const int p=1e4+7;
const int P=1004535809;
int n,k;
struct edge{
int to,nex;
}e[maxn<<1];
int head[maxn],tot;
int siz[maxn],dp[maxn],vis[maxn],rt;
int w[maxn],cnt[maxn],ans[maxn];
int f[maxn],g[maxn],rev[maxn],len=1;
void add(int a,int b){
e[++tot]=(edge){b,head[a]};
head[a]=tot;
}
int ksm(int a,int b,int p){
int ans=1;
while(b){
if(b&1) ans=1ll*ans*a%p;
b>>=1,a=1ll*a*a%p;
}
return ans;
}
vector<int> W[20];
void INIT(){
for(int i=1,num=0;num<=17;++num,i<<=1){
int w=ksm(3,(P-1)/(i<<1),P),tmp=1;
for(int k=0;k<i;++k)
W[num].emplace_back(tmp),tmp=1ll*tmp*w%P;
}
}
void NTT(int *f){
for(int i=0;i<len;++i)
if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int i=1,num=0;i<len;i<<=1,++num){
for(int j=0;j<len;j+=(i<<1)){
for(int k=0;k<i;++k){
int x=f[j|k],y=1ll*W[num][k]*f[i|j|k]%P;
f[j|k]=x+y>P?x+y-P:x+y;
f[i|j|k]=x-y<0?x-y+P:x-y;
}
}
}
}
void init(int x){
len=1;
while(len<=x) len<<=1;
f[0]=g[0]=0;
for(int i=1;i<len;++i)
rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
memset(f,0,sizeof (int)*len);
memset(g,0,sizeof (int)*len);
}
void getroot(int u,int f,int sum){
siz[u]=1,dp[u]=0;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==f||vis[v]) continue;
getroot(v,u,sum);
siz[u]+=siz[v];
dp[u]=max(siz[v],dp[u]);
}
dp[u]=max(dp[u],sum-siz[u]);
if(dp[u]<dp[rt]) rt=u;
}
void clear(int u,int f,int dis,int &mx){
mx=max(mx,dis);
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==f||vis[v]) continue;
clear(v,u,dis+1,mx);
}
}
void getdis(int u,int f,int dis){
++cnt[dis];
if(cnt[dis]>=p) cnt[dis]-=p;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==f||vis[v]) continue;
getdis(v,u,dis+1);
}
}
int owo[251];
void mul(int *a,int *b,int n){
if(n<=100){
memset(owo,0,sizeof (int)*(2*n+1));
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
owo[i+j]=owo[i+j]+1ll*a[i]*b[j]%P>P?owo[i+j]+1ll*a[i]*b[j]%P-P:owo[i+j]+1ll*a[i]*b[j]%P;
for(int i=0;i<=2*n;++i) a[i]=owo[i];
return ;
}
memcpy(f,a,sizeof (int)*(n+1));
memcpy(g,b,sizeof (int)*(n+1));
NTT(f),NTT(g);
for(int i=0;i<len;++i) f[i]=1ll*f[i]*g[i]%P;
NTT(f);
reverse(f+1,f+len);
int inv=ksm(len,P-2,P);
for(int i=0;i<=2*n;++i) a[i]=1ll*f[i]*inv%P;
}
void dfs(int u,int f,int dis,int opt){
ans[u]+=opt*cnt[dis];
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==f||vis[v]) continue;
dfs(v,u,dis+1,opt);
}
}
void calc(int u,int dis,int opt){
int n=0;
clear(u,0,dis,n);n*=2;
memset(cnt,0,sizeof (int)*(n+1));
getdis(u,0,dis);
reverse(cnt,cnt+n+1);
init(2*n);
mul(cnt,w,n);
for(int i=0;i<=n;++i) cnt[i]=cnt[i+n];
dfs(u,0,dis,opt);
}
void solve(int u){
vis[u]=1;
calc(u,0,1);
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(vis[v]) continue;
calc(v,1,-1);
rt=0;
getroot(v,0,siz[v]);
solve(rt);
}
}
int main(){
// freopen("1.in","r",stdin);
// freopen("1.out","w",stdout);
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>k;
INIT();
for(int i=1;i<n;++i){
int a,b;cin>>a>>b;
add(a,b),add(b,a);
}
for(int i=0;i<n;++i) w[i]=ksm(i,k,p);
dp[0]=(1<<30);
getroot(1,0,n);
solve(rt);
for(int i=1;i<=n;++i) cout<<ans[i]%p<<'\n';
}

P4827「国家集训队」 Crash 的文明世界的更多相关文章

  1. 「国家集训队」Crash的数字表格

    题目描述 求(对 \(20101009\) 取模,\(n,m\le10^7\) ) \[\sum_{i=1}^n\sum_{j=1}^m\operatorname{lcm}(i,j)\] 大体思路 推 ...

  2. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  3. 「国家集训队」小Z的袜子

    「国家集训队」小Z的袜子 传送门 莫队板子题. 注意计算答案的时候,由于分子分母都要除以2,所以可以直接约掉,这样在开桶算的时候也方便一些. 参考代码: #include <algorithm& ...

  4. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  5. Solution -「国家集训队」「洛谷 P2619」Tree I

    \(\mathcal{Description}\)   Link.   给一个 \(n\) 个点 \(m\) 条边的带权无向图,边有权值和黑白颜色,求恰选出 \(K\) 条白边构成的最小生成树.    ...

  6. Solution -「国家集训队」「洛谷 P2839」Middle

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),\(q\) 组询问,给定 \(a<b<c<d\),求 \(l\le[a,b] ...

  7. Solution -「国家集训队」「洛谷 P4451」整数的 lqp 拆分

    \(\mathcal{Description}\)   Link.   求 \[\sum_{m>0\\a_{1..m}>0\\a_1+\cdots+a_m=n}\prod_{i=1}^mf ...

  8. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  9. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

随机推荐

  1. Mysql索引数据结构为什么是B+树?

    目录 Mysql索引数据结构 二叉树 红黑树 B-Tree B+Tree Mysql索引数据结构 下面列举了常见的数据结构 二叉树 红黑树 Hash表 B-Tree(B树) Select * from ...

  2. Nginx的配置参数中文说明

    Nginx的配置参数中文说明   前言 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,在BSD-like 协议下发行.其特点是占有内存少,并发能力强 ...

  3. ARM系统架构

    ARM系统架构 一.ARM概要 ARM架构,曾称进阶精简指令集机器(Advanced RISC Machine)更早称作Acorn RISC Machine,是一个32位精简指令集(RISC)处理器架 ...

  4. 功率半导体碳化硅(SiC)技术

    功率半导体碳化硅(SiC)技术 Silicon Carbide Adoption Enters Next Phase 碳化硅(SiC)技术的需求继续增长,这种技术可以最大限度地提高当今电力系统的效率, ...

  5. mybatis入门案例——IDEA版

    环境:IDEA2017,jdk1.8.0,maven3.5.2 步骤: 1.创建一个普通Maven工程,删掉src目录,再创建一个maveb的model命名为mybatis-01 2.配置 pom.x ...

  6. 错误:软件包:php-fpm-5.4.16-42.el7.x86_64 需要:php-common(x86-64)

    报错信息:错误:软件包:php-fpm-5.4.16-42.el7.x86_64 (/php-fpm-5.4.16-42.el7.x86_64)需要:php-common(x86-64) = 5.4. ...

  7. 四、SSL虚拟证书

    沿用练习三,配置基于加密网站的虚拟主机,实现以下目标: 域名为www.c.com 该站点通过https访问 通过私钥.证书对该站点所有数据加密 4.2 方案 源码安装Nginx时必须使用--with- ...

  8. POI导出Excel时下拉列表值超过255的问题(String literals in formulas can't be bigger than 255 characters ASCII)

    //创建Excel工作薄对象 Workbook workbook = new HSSFWorkbook(); //生成一个表格 设置:页签 Sheet sheet = workbook.createS ...

  9. 不懂就问」CPU 到底是怎么识别代码的?

    近读到这样一篇文章,从底层硬件角度出发剖析了一下CPU对代码的识别和读取,内容之精彩,读完感觉学到的很多东西瞬间联系起来了,分享给猿们. 首先要开始这个话题要先说一下半导体.啥叫半导体? 半导体其实就 ...

  10. Python常用数据结构(列表)

    Python中常用的数据结构有序列(如列表,元组,字符串),映射(如字典)以及集合(set),是主要的三类容器 内容 序列的基本概念 列表的概念和用法 元组的概念和用法 字典的概念和用法 各类型之间的 ...