简单的介绍一下Java设计模式:解释器模式
定义
解释器模式是类的行为型模式,给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器,客户端可以使用这个解释器来解释这个语言中的句子
意图
给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子
主要解决问题
对于一些固定文法构建一个解释句子的解释器
优缺点
优点:
- 扩展性好,灵活
- 增加了新的解释表达式的方式
- 易于实现简单的文法
缺点:
- 使用场景较少
- 对于复杂的文法比较难以维护
- 会引起类膨胀
- 采用递归调用方法,效率低
结构
涉及的角色:
- 抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口,这个接口主要是一个interpret方法,称作解释操作
- 终结符表达式(TerminalExpression)角色:这是一个具体角色
- 实现了抽象表达式角色要求的接口,主要是一个interpret方法
- 文法中的每一个终结符都有一个具体终结表达式与之相对应
- 非终结符表达式(NonterminalExpression)角色:这是一个具体角色
- 文法中的每一条规则R=R1R2...Rn都需要一个具体的非终结符表达式类
- 对每一个R=R1R2...Rn中的符号都持有一个静态类型为Expression的实例变量
- 实现解释操作interpret方法,解释操作以递归方式调用上面所提到的代表R1R2...Rn中的各个符号的实例变量
- 客户端(Client)角色:建造一个抽象语法树,调用解释操作
- 环境(Context)角色:提供解释器之外的一些全局信息,比如变量的真实量值等
示例
抽象表达式角色:
/**
* 这个抽象类代表终结类和非终结类的抽象化
*/
public abstract class Expression {
/** 以环境类为准,本方法解释给定的任何一个表达式 */
public abstract boolean interpret(Context ctx);
/** 检验两个表达式在结构上是否相同 */
public abstract boolean equals(Object o);
/** 返回表达式的hashCode */
public abstract int hashCode();
/** 将表达式转换为字符串 */
public abstract String toString();
}
终结表达式角色:
一个Constant对象代表一个布尔常量
public class Constant extends Expression {
private boolean value;
public Constant(boolean value) {
this.value = value;
}
/** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return value;
}
/** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Constant) {
return this.value = ((Constant)o).value;
}
return false;
}
/** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
}
/** 将表达式转换为字符串 */
@Override
public String toString(){
return new Boolean(value).toString();
}
}
一个Variable对象代表一个有名变量
public class Variable extends Expression {
private String name;
public Variable(String name) {
this.name = name;
}
/** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return ctx.lookup(this);
}
/** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Variable) {
return this.name.equals(((Variable)o).name);
}
return false;
}
/** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
}
/** 将表达式转换为字符串 */
@Override
public String toString() {
return name;
}
}
非终结表达式角色:
表示由两个布尔表达式通过逻辑与操作给出一个新的布尔表达式的操作:
public class And extends Expression {
private Expression left, right;
public And(Expression left, Expression right) {
this.left = left;
this.right = right;
}
/** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return left.interpret(ctx) && right.interpret(ctx);
}
/** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof And) {
return this.left.equals(((And)o).left) && this.right.equals(((And)o).right);
}
return false;
}
/** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
}
/** 将表达式转换为字符串 */
@Override
public String toString() {
return "(" + left.toString() + " AND " + right.toString() + ")";
}
}
表示由两个布尔表达式通过逻辑或操作给出一个新的布尔表达式的操作:
public class Or extends Expression {
private Expression left, right;
public Or(Expression left, Expression right) {
this.left = left;
this.right = right;
}
/** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return left.interpret(ctx) || right.interpret(ctx);
}
/** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Or) {
return this.left.equals(((Or)o).left) && this.right.equals(((Or)o).right);
}
return false;
}
/** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
}
/** 将表达式转换为字符串 */
@Override
public String toString() {
return "(" + left.toString() + " OR " + right.toString() + ")";
}
}
表示由一个布尔表达式通过逻辑非操作给出一个新的布尔表达式的操作:
public class Not extends Expression {
private Expression exp;
public Not(Expression exp) {
this.exp = exp;
}
/** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return !exp.interpret(ctx);
}
/** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Not) {
return this.exp.equals(((Not)o).exp);
}
return false;
}
/** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
}
/** 将表达式转换为字符串 */
@Override
public String toString() {
return "(Not " + exp.toString() + ")";
}
}
环境类定义出从变量到布尔值的一个映射:
public class Context {
private HashMap map = new HashMap();
public void assign(Variable var, boolean value) {
map.put(var, new Boolean(value));
}
public boolean lookup(Variable var) {
Boolean value = (Boolean) map.get(var);
if (value == null) {
throw new IllegalArgumentException();
}
return value.booleanValue();
}
}
客户端角色:
public class Client {
private static Context ctx;
private static Expression exp;
public static void main(String[] args) {
ctx = new Context();
Variable x = new Variable("x");
Variable y = new Variable("y");
Constant c = new Constant(true);
ctx.assign(x, false);
ctx.assign(y, true);
exp = new Or(new And(c, x), new And(y, new Not(x)));
System.out.println("x= " + x.interpret(ctx));
System.out.println("y= " + y.interpret(ctx));
System.out.println(exp.toString() + " = " + exp.interpret(ctx));
}
}
适用情况
- 系统有一个简单的语言可供解释
- 一些重复发生的问题可以用这种简单的语言表达
- 效率不是主要考虑的问题
简单的介绍一下Java设计模式:解释器模式的更多相关文章
- Java设计模式----解释器模式
计算器中,我们输入“20 + 10 - 5”,计算器会得出结果25并返回给我们.可你有没有想过计算器是怎样完成四则运算的?或者说,计算器是怎样识别你输入的这串字符串信息,并加以解析,然后执行之,得出结 ...
- JAVA 设计模式 解释器模式
用途 解释器模式 (Interpreter) 定义一个语言,定义它的文法的一种表示. 并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 解释器模式是一种行为型模式. 结构
- Java设计模式—解释器模式&迭代器模式简介
解释器模式在实际的系统开发中使用得非常少,因为它会引起效率.性能以及维护等问题,一般在大中型的框架型项目能够找到它的身影,如一些数据分析工具.报表设计工具.科学计算工具等,若你确实遇到" ...
- Java设计模式-解释器模式(Interpreter)
解释器模式是我们暂时的最后一讲,一般主要应用在OOP开发中的编译器的开发中,所以适用面比较窄. Context类是一个上下文环境类,Plus和Minus分别是用来计算的实现,代码如下: public ...
- 【设计模式】Java设计模式 - 命令模式
Java设计模式 - 命令模式 生命不息,写作不止 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 一个有梦有戏的人 @怒放吧德德 分享学习心得,欢迎指正,大家一起学习成长! 目录 Ja ...
- Java设计模式——组合模式
JAVA 设计模式 组合模式 用途 组合模式 (Component) 将对象组合成树形结构以表示“部分-整体”的层次结构.组合模式使得用户对单个对象和组合对象的使用具有唯一性. 组合模式是一种结构型模 ...
- Java设计模式-代理模式之动态代理(附源代码分析)
Java设计模式-代理模式之动态代理(附源代码分析) 动态代理概念及类图 上一篇中介绍了静态代理,动态代理跟静态代理一个最大的差别就是:动态代理是在执行时刻动态的创建出代理类及其对象. 上篇中的静态代 ...
- Java设计模式——外观模式
JAVA 设计模式 外观模式 用途 外观模式 (Facade) 为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 外观模式是一种结构型模式. 结构
- 【设计模式】Java设计模式 -工厂模式
[设计模式]Java设计模式 -工厂模式 不断学习才是王道 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 一个有梦有戏的人 @怒放吧德德 分享学习心得,欢迎指正,大家一起学习成长! 目 ...
随机推荐
- Java进阶专题(二十六) 数据库原理研究与优化
前言 在一个大数据量的系统中,这些数据的存储.处理.搜索是一个非常棘手的问题. 比如存储问题:单台服务器的存储能力及数据处理能力都是有限的, 因此需要增加服务器, 搭建集群来存储海量数据. 读写性能问 ...
- 【Notes_1】现代图形学入门——计算机图形学概述
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 通过const app = getApp()实现在 page 页面获取 app.js 定义的属性globalData,即获取全局数据
App.js是项目的入口文件,页面的 page.js 文件会覆盖 app.js文件, App.js文件里面的一些方法: onLaunch : function(){}:这个方法是当小程序加载完毕后就执 ...
- Redis 内存淘汰机制详解
一般来说,缓存的容量是小于数据总量的,所以,当缓存数据越来越多,Redis 不可避免的会被写满,这时候就涉及到 Redis 的内存淘汰机制了.我们需要选定某种策略将"不重要"的数据 ...
- 行业动态 | 通过使用Apache Cassandra实现实时供应链管理
借助基于Apache Cassandra的DataStax Enterprise,C&S Wholesale确实得到了他们所需要的东西--一个持续在线的仓库运作整体视图. 视图中包含了原本 ...
- Windows开发常用快捷键
毕业后一直在从事Windows开发工作,掌握些常用的Windows快捷键可以大大的提升工作效率,同时还能秀一波操作.本文记录在工作中常用的Windows快捷键,以及VS常用快捷键.掌握了这些键盘操作, ...
- 后端程序员之路 59、go uiprogress
gosuri/uiprogress: A go library to render progress bars in terminal applicationshttps://github.com/g ...
- 后端程序员之路 49、SSDB
正如Redis似乎是为替换memcached一样,SSSB是一个国人开发的旨在替换Redis的kv数据库. SSDB - 高性能的支持丰富数据结构的 NoSQL 数据库, 替代 Redishttp:/ ...
- SOLID架构设计原则
最近通读了<架构整洁之道>,受益匪浅,遂摘选出设计原则部分,与大家分享,希望大家能从中获益. 以下为书中第3部分 设计原则的原文. 设计原则概述 通常来说,要想构建-个好的软件系统,应该从 ...
- 详解JavaScript中的原型
前言 原型.原型链应该是被大多数前端er说烂的词,但是应该还有很多人不能完整的解释这两个内容,当然也包括我自己. 最早一篇原型链文章写于2019年07月,那个时候也是费了老大劲才理解到了七八成,到现在 ...