x86 cpu卷积网络的自动调谐

这是一个关于如何为x86cpu调整卷积神经网络的文档。

本文不会在Windows或最新版本的macOS上运行。要让它运行,需要将主体包装在

if __name__ == "__main__": 块中。

import os

import numpy as np

import tvm

from tvm import relay, autotvm

from tvm.relay import testing

from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner

from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner

import tvm.contrib.graph_runtime as runtime

Define network

首先需要在中继前端API中定义网络。可以从relay.testing测试或编译

relay.testing.resnet转换。也可以从MXNet、ONNX和TensorFlow加载模型。              本文选择restuning作为示例。

def get_network(name, batch_size):

"""Get the symbol definition and random weight of a network"""

input_shape = (batch_size, 3, 224, 224)

output_shape = (batch_size, 1000)

if "resnet" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.resnet.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif "vgg" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.vgg.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif name == "mobilenet":

mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "squeezenet_v1.1":

mod, params = relay.testing.squeezenet.get_workload(

batch_size=batch_size, version="1.1", dtype=dtype

)

elif name == "inception_v3":

input_shape = (batch_size, 3, 299, 299)

mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "mxnet":

# an example for mxnet model

from mxnet.gluon.model_zoo.vision import get_model

block = get_model("resnet18_v1", pretrained=True)

mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)

net = mod["main"]

net = relay.Function(

net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs

)

mod = tvm.IRModule.from_expr(net)

else:

raise ValueError("Unsupported network: " + name)

return mod, params, input_shape, output_shape

# Replace "llvm" with the correct target of your CPU.

# For example, for AWS EC2 c5 instance with Intel Xeon

# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".

# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be

# "llvm -mcpu=core-avx2".

target = "llvm"

batch_size = 1

dtype = "float32"

model_name = "resnet-18"

log_file = "%s.log" % model_name

graph_opt_sch_file = "%s_graph_opt.log" % model_name

# Set the input name of the graph

# For ONNX models, it is typically "0".

input_name = "data"

# Set number of threads used for tuning based on the number of

# physical CPU cores on your machine.

num_threads = 1

os.environ["TVM_NUM_THREADS"] = str(num_threads)

Configure tensor tuning settings and create tasks

为了在x86cpu上获得更好的内核执行性能,需要将卷积内核的数据布局从“NCHW”改为“NCHWc”。为了解决这种情况,在topi中定义了conv2d NCHWc运算符。将调整此运算符,而不是普通的conv2d。

将使用本地模式来优化配置。RPC跟踪器模式的设置类似于ARM CPU的卷积网络自动调谐教程中的方法。

为了进行精确测量,应该重复测量几次,并使用结果的平均值。此外,需要在重复测量之间刷新缓存中的权重张量。在端到端推断期间,这可以使一个操作符的测量延迟更接近其实际延迟。

tuning_option = {

"log_filename": log_file,

"tuner": "random",

"early_stopping": None,

"measure_option": autotvm.measure_option(

builder=autotvm.LocalBuilder(),

runner=autotvm.LocalRunner(

number=1, repeat=10, min_repeat_ms=0, enable_cpu_cache_flush=True

),

),

}

# You can skip the implementation of this function for this tutorial.

def tune_kernels(

tasks, measure_option, tuner="gridsearch", early_stopping=None, log_filename="tuning.log"

):

for i, task in enumerate(tasks):

prefix = "[Task %2d/%2d] " % (i + 1, len(tasks))

# create tuner

if tuner == "xgb" or tuner == "xgb-rank":

tuner_obj = XGBTuner(task, loss_type="rank")

elif tuner == "ga":

tuner_obj = GATuner(task, pop_size=50)

elif tuner == "random":

tuner_obj = RandomTuner(task)

elif tuner == "gridsearch":

tuner_obj = GridSearchTuner(task)

else:

raise ValueError("Invalid tuner: " + tuner)

# do tuning

n_trial = len(task.config_space)

tuner_obj.tune(

n_trial=n_trial,

early_stopping=early_stopping,

measure_option=measure_option,

callbacks=[

autotvm.callback.progress_bar(n_trial, prefix=prefix),

autotvm.callback.log_to_file(log_filename),

],

)

# Use graph tuner to achieve graph level optimal schedules

# Set use_DP=False if it takes too long to finish.

def tune_graph(graph, dshape, records, opt_sch_file, use_DP=True):

target_op = [

relay.op.get("nn.conv2d"),

]

Tuner = DPTuner if use_DP else PBQPTuner

executor = Tuner(graph, {input_name: dshape}, records, target_op, target)

executor.benchmark_layout_transform(min_exec_num=2000)

executor.run()

executor.write_opt_sch2record_file(opt_sch_file)

最后,启动优化作业并评估端到端性能。

def tune_and_evaluate(tuning_opt):

# extract workloads from relay program

print("Extract tasks...")

mod, params, data_shape, out_shape = get_network(model_name, batch_size)

tasks = autotvm.task.extract_from_program(

mod["main"], target=target, params=params, ops=(relay.op.get("nn.conv2d"),)

)

# run tuning tasks

tune_kernels(tasks, **tuning_opt)

tune_graph(mod["main"], data_shape, log_file, graph_opt_sch_file)

# compile kernels with graph-level best records

with autotvm.apply_graph_best(graph_opt_sch_file):

print("Compile...")

with tvm.transform.PassContext(opt_level=3):

lib = relay.build_module.build(mod, target=target, params=params)

# upload parameters to device

ctx = tvm.cpu()

data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))

module = runtime.GraphModule(lib["default"](ctx))

module.set_input(input_name, data_tvm)

# evaluate

print("Evaluate inference time cost...")

ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)

prof_res = np.array(ftimer().results) * 1000  # convert to millisecond

print(

"Mean inference time (std dev): %.2f ms (%.2f ms)"

% (np.mean(prof_res), np.std(prof_res))

)

# We do not run the tuning in our webpage server since it takes too long.

# Uncomment the following line to run it by yourself.

# tune_and_evaluate(tuning_option)

Sample Output

调整需要编译许多程序并从中提取特性。因此建议使用高性能CPU。下面列出了一个示例输出。

Extract tasks...
Tuning...
[Task  1/12]  Current/Best:  598.05/2497.63 GFLOPS | Progress: (252/252) | 1357.95 s Done.
[Task  2/12]  Current/Best:  522.63/2279.24 GFLOPS | Progress: (784/784) | 3989.60 s Done.
[Task  3/12]  Current/Best:  447.33/1927.69 GFLOPS | Progress: (784/784) | 3869.14 s Done.
[Task  4/12]  Current/Best:  481.11/1912.34 GFLOPS | Progress: (672/672) | 3274.25 s Done.
[Task  5/12]  Current/Best:  414.09/1598.45 GFLOPS | Progress: (672/672) | 2720.78 s Done.
[Task  6/12]  Current/Best:  508.96/2273.20 GFLOPS | Progress: (768/768) | 3718.75 s Done.
[Task  7/12]  Current/Best:  469.14/1955.79 GFLOPS | Progress: (576/576) | 2665.67 s Done.
[Task  8/12]  Current/Best:  230.91/1658.97 GFLOPS | Progress: (576/576) | 2435.01 s Done.
[Task  9/12]  Current/Best:  487.75/2295.19 GFLOPS | Progress: (648/648) | 3009.95 s Done.
[Task 10/12]  Current/Best:  182.33/1734.45 GFLOPS | Progress: (360/360) | 1755.06 s Done.
[Task 11/12]  Current/Best:  372.18/1745.15 GFLOPS | Progress: (360/360) | 1684.50 s Done.
[Task 12/12]  Current/Best:  215.34/2271.11 GFLOPS | Progress: (400/400) | 2128.74 s Done.
Compile...
Evaluate inference time cost...
Mean inference time (std dev): 3.16 ms (0.03 ms)

https://tvm.apache.org/docs/tutorials/autotvm/tune_relay_x86.html

下载Python源代码:tune_relay_x86.py

下载Jupyter笔记本:tune_relay_x86.ipynbDownload Python source code: tune_relay_x86.py

Download Jupyter notebook: tune_relay_x86.ipynb

x86 cpu卷积网络的自动调谐的更多相关文章

  1. ARM-CPU卷积网络的自动调谐

    ARM-CPU卷积网络的自动调谐 为特定的ARM设备自动调谐对于获得最佳性能至关重要.这是一个关于如何调整整个卷积网络的资料. 以模板的形式编写了TVM中ARM CPU的操作实现.模板有许多可调旋钮( ...

  2. NVIDIA GPU卷积网络的自动调谐

    NVIDIA GPU卷积网络的自动调谐 针对特定设备和工作负载的自动调整对于获得最佳性能至关重要.这是关于如何为NVIDIA GPU调整整个卷积网络. NVIDIA GPU在TVM中的操作实现是以模板 ...

  3. 自动调试用于移动GPU的卷积网络

    自动调试用于移动GPU的卷积网络 对特定设备进行自动调试对于获得最佳性能至关重要.这是有关如何调试整个卷积网络的说明文档. TVM中Mobile GPU的算子实现以模板形式编写.模板具有许多可调旋钮( ...

  4. 为x86 CPU自动调度神经网络

    为x86 CPU自动调度神经网络 对特定设备和工作负载进行自动调试对于获得最佳性能至关重要.这是有关如何使用自动调度器为x86 CPU调试整个神经网络的文档. 为了自动调试神经网络,将网络划分为小的子 ...

  5. 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法

    基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...

  6. 全卷积网络 FCN 详解

    背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional N ...

  7. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  8. FCN-全卷积网络

    全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定 ...

  9. 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet

    原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...

随机推荐

  1. C/C++ 实现VA与FOA之间的转换

    PE结构中的地址互转,这次再来系统的复习一下关于PE结构中各种地址的转换方式,最终通过编程来实现自动解析计算,最后将这个功能集成到我的迷你解析器中,本章中使用的工具是上次讲解PE结构文章中制作的CMD ...

  2. hdu3449 有依赖的背包问题

    题意:       给你一些物品,每个物品有自己的价值和花费,每个物品都对应一个箱子,每个箱子有价钱,买这个物品必须买相应的箱子,给你一个价钱,问最多可以获得多少价值 <提示:多个物品可能同时对 ...

  3. android apk壳

    壳对于有过pc端加解密经验的同学来说并不陌生,android世界中的壳也是相同的存在.看下图(exe = dex):    概念清楚罗,我们就说下:壳最本质的功能就是实现加载器.你看加壳后,系统是先执 ...

  4. 学习Canvas绘图与动画基础 绘制直线(二)

    1 <!DOCTYPE html> 2 <html> 3 <head lang="en"> 4 <meta charset="U ...

  5. Mac下配置Git 的全局忽略文件

    $ git config --global core.excludesfile ~/.gitignore_global $ vim ~/.gitignore_global #配置文件参考如下 # fo ...

  6. java面试一日一题:如何判断一个对象是否为垃圾对象

    问题:请讲下在java中如何判断一个对象是否为垃圾 分析:该问题主要考察对java中的垃圾回收,用什么方式去识别一个对象是垃圾: 回答要点: 主要从以下几点去考虑, 1.GC回收的是什么,回收发生在内 ...

  7. (数据科学学习手札121)Python+Dash快速web应用开发——项目结构篇

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...

  8. phpstudy2018 开启目录浏览

    废话不多说直接开始 一.打开 vhosts-ini 配置文件 二.加入以下内容  注意填写自己的网站根目录 <Directory "你自己的网站根目录"> Option ...

  9. C++基础——文件逐行读取与字符匹配

    技术背景 用惯了python,对其他语言就比较的生疏.但是python很多时候在性能上比较受局限,这里尝试通过C++来实现一个文件IO的功能,看看是否能够比python的表现更好一些.关于python ...

  10. mysql order by 多样依照排序

    如果先按a排序升序,a相同时按b降序排序 则order by a,b desc