数据结构--Dijkstra算法最清楚的讲解
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止
###基本思想
通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。
###操作步骤
初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
重复步骤(2)和(3),直到遍历完所有顶点。
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
###图解
以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。以下B节点中23应为13。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
###代码
邻接矩阵为例,
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。
例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
####Dijkstra算法
/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
// 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}
数据结构--Dijkstra算法最清楚的讲解的更多相关文章
- 深入浅出数据结构C语言版(1)——什么是数据结构及算法
在很多数据结构相关的书籍,尤其是中文书籍中,常常把数据结构与算法"混合"起来讲,导致很多人初学时对于"数据结构"这个词的意思把握不准,从而降低了学习兴趣和学习信 ...
- 用python语言讲解数据结构与算法
写在前面的话:关于数据结构与算法讲解的书籍很多,但是用python语言去实现的不是很多,最近有幸看到一本这样的书籍,由Brad Miller and David Ranum编写的<Problem ...
- [0x00 用Python讲解数据结构与算法] 概览
自从工作后就没什么时间更新博客了,最近抽空学了点Python,觉得Python真的是很强大呀.想来在大学中没有学好数据结构和算法,自己的意志力一直不够坚定,这次想好好看一本书,认真把基本的数据结构和算 ...
- Dijkstra算法模拟讲解
dijkstra算法,是一个求单源最短路径算法 其算法的特点为: 层层逼进,有点类似宽度搜索的感觉 其需要的数据结构为: int map[N][N] 所有点之间的权表 ...
- 数据结构与算法系列研究七——图、prim算法、dijkstra算法
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...
- 数据结构与算法(九):AVL树详细讲解
数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...
- 数据结构与算法--最短路径之Dijkstra算法
数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们 ...
- 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )
数据结构实验之图论七:驴友计划 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...
- Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...
随机推荐
- windows下flutter2.2.3环境搭建
先上几个必上的网站: 官网: https://flutter.cn/docs/get-started/install/windows 中文资源网(毕竟中文母语,看着轻松): https://flutt ...
- ctf之SusCTF2017-Caesar cipher
由题目名字SusCTF2017-Caesar cipher可知,该题目考察凯撒密码. 直接下载附件打开如图 由题目描述可知,提交的flag格式为Susctf{}.在网上搜索在凯撒密码解密. 偏移量为3 ...
- 利用PE破解系统密码
1.利用pe制作工具制作pe启动盘或者ios镜像 2.制作好后,在虚拟机设置里面加载镜像 3. 3.开启时选择打开电源进入固件 4.开启后依次选择:Boot--->CD-ROM Drive并按F ...
- Python爬虫下载酷狗音乐
目录 1.Python下载酷狗音乐 1.1.前期准备 1.2.分析 1.2.1.第一步 1.2.2.第二步 1.2.3.第三步 1.2.4.第四步 1.3.代码实现 1.4.运行结果 1.Python ...
- mpvue开发小程序项目遇到的问题
mpvue项目 最近用mpvue开发了一个家庭私人医生签约的小程序项目.记录总结一下,开发过程中遇到的一些问题. 关于页面进栈出栈的状态值问题 页面进出栈,会触发onLoad/unLoad事件.出栈不 ...
- Leetcode13. 罗马数字转整数Leetcode14. 最长公共前缀Leetcode15. 三数之和Leetcode16. 最接近的三数之和Leetcode17. 电话号码的字母组合
> 简洁易懂讲清原理,讲不清你来打我~ 输入字符串,输出对应整数 ![在这里插入图片描述](https://img-blog.csdnimg.cn/63802fda72be45eba98d9e4 ...
- Discuz! X3.4 邮件设置 使用qq邮箱发邮件
1. 在qq邮箱->设置中,获取授权码 2. 在discuz后台配置基础信息 3. 在服务器的防火墙中添加规则,允许访问465端口
- 虚拟机安装RHEL8.0.0
在VMware Workstations 15.0.0中安装RHEL8.0.0 使用到的软件和主机基本配置 此处宿主机基本硬件配置:i3-7100U 4核,内存:12G 虚拟化软件:VMware Wo ...
- 基于小熊派Hi3861鸿蒙开发的IoT物联网学习【四】
一.互斥锁基本概念: 1.互斥锁又称互斥型信号量,是一种特殊的二值性信号量[二值型信号量可以理解为任务与中断间或者两个任务间的标志,该标志非"满"即"空"],用 ...
- tomcat与springmvc 结合 之---第19篇 springmvc 加载.xml文件的bean 过程
writedby 张艳涛,看springmvc 的源码太难了,怎么办, 这篇文章主要分析了看透springmvc的第9章结尾的 如何解析xml 命名空间标签 <?xml version=&quo ...