POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127
Description
Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN
<= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .
Input
Output
them.
Sample Input
5
1 4 2 5 -12
4
-12 1 2 4
Sample Output
2
1 4
状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度
状态转移方程:
dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k < j
dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]
#include <stdio.h>
#include <string.h> #define MAX 501 typedef struct path{
int x, y;
}Pre; int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index; int LCIS(){
int i, j;
int max, tx, ty;
int id_x, id_y;
int tmpx, tmpy;
//给dp[i][j]、pre[i][j]置初值
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
for (i = 1; i <= len1; ++i){
max = 0;
tx = ty = 0;
for (j = 1; j <= len2; ++j){
//状态转移方程
dp[i][j] = dp[i-1][j];
pre[i][j].x = i - 1;
pre[i][j].y = j;
if (seq1[i] > seq2[j] && max < dp[i-1][j]){
max = dp[i-1][j];
tx = i - 1;
ty = j;
}
if (seq1[i] == seq2[j]){
dp[i][j] = max + 1;
pre[i][j].x = tx;
pre[i][j].y = ty;
}
}
}
//找到LCIS最后的数字的位置
max = -1;
for (i = 1; i <= len2; ++i){
if (dp[len1][i] > max){
max = dp[len1][i];
id_y = i;
}
}
id_x = len1;
index = 0;
while (dp[id_x][id_y] != 0){
tmpx = pre[id_x][id_y].x;
tmpy = pre[id_x][id_y].y;
//若找到前一对公共点,则添加进路径
if (dp[tmpx][tmpy] != dp[id_x][id_y]){
path[index] = seq2[id_y];
++index;
}
id_x = tmpx;
id_y = tmpy;
}
return max;
} int main(void){
int i;
while (scanf("%d", &len1) != EOF){
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]); printf("%d\n", LCIS());
--index;
if (index >= 0)
printf("%d", path[index]);
for (i = index - 1; i >= 0; --i){
printf(" %d", path[i]);
}
printf("\n");
} return 0;
}
POJ 2127 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章
- POJ 2127 Greatest Common Increasing Subsequence
You are given two sequences of integer numbers. Write a program to determine their common increasing ...
- 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)
\(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...
- 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】
Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- LCIS POJ 2172 Greatest Common Increasing Subsequence
题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...
- HDU 1423 Greatest Common Increasing Subsequence ——动态规划
好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...
- HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...
- HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)
Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
随机推荐
- inferred 和 freefrom
“Inferred” is the default setting for storyboards and it means the scene will show a navigation bar ...
- Android设计模式系列--原型模式
CV一族,应该很容易理解原型模式的原理,复制,粘贴完后看具体情况是否修改,其实这就是原型模式.从java的角度看,一般使用原型模式有个明显的特点,就是实现cloneable的clone()方法.原型模 ...
- Windows Server 2012配置开机启动项
1.运行 shell:startup 命令,如下:
- python会什么比c慢
众所周知,python执行速度比c慢.原因为何? 先来看下面这张图: python的传统运行执行模式:录入的源代码转换为字节码,之后字节码在python虚拟机中运行.代码自动被编译,之后再解释成机器码 ...
- 在Image控件中绘制文字
//Canvas 在Image控件中绘制文字 procedure TForm1.Button1Click(Sender: TObject);begin image1.Canvas.Font.Size ...
- 开发腾讯移动游戏平台SDK ios版Ane扩展 总结
本文记录了在开发 腾讯移动游戏平台SDK(MSDK) ios版Ane扩展 过程中所遇到的问题 文中非常多问题都是基础的问题.对object c和xcode配置了解不深入导致的.(没办法,开发ane的程 ...
- Java中的NIO和IO的对比分析
总的来说,java中的IO和NIO主要有三点区别: IO NIO 面向流 面向缓冲 阻塞IO 非阻塞IO 无 选择器(Selectors) 1.面向流与面向缓冲 Java NIO和IO之间第一个最大的 ...
- taobao月报 ---mysql汇总
http://blog.csdn.net/qiuyepiaoling/article/category/709481
- STL——空间的配置和释放std::alloc(第一级配置器和第二级配置器)
1 空间的配置和释放,std::alloc 对象构造前的空间配置和对象析构后的空间释放,由<stl_alloc.h>负责,SGI对此的设计哲学如下: 向system heap要求空间 考虑 ...
- 面试题总结之Linux/Shell
Linux Linux cshrc文件作用 Linux如何起进程/查看进程/杀进程 Linux 文件755 代表什么权限 Linux辅助线程 Linux进程间通信方法 pipeline,msgq... ...