题目地址:http://poj.org/problem?id=2127

Description

You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.


Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN
<= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

Input

Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

Output

On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of
them.

Sample Input

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度

状态转移方程:

dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k  < j

dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]

#include <stdio.h>
#include <string.h> #define MAX 501 typedef struct path{
int x, y;
}Pre; int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index; int LCIS(){
int i, j;
int max, tx, ty;
int id_x, id_y;
int tmpx, tmpy;
//给dp[i][j]、pre[i][j]置初值
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
for (i = 1; i <= len1; ++i){
max = 0;
tx = ty = 0;
for (j = 1; j <= len2; ++j){
//状态转移方程
dp[i][j] = dp[i-1][j];
pre[i][j].x = i - 1;
pre[i][j].y = j;
if (seq1[i] > seq2[j] && max < dp[i-1][j]){
max = dp[i-1][j];
tx = i - 1;
ty = j;
}
if (seq1[i] == seq2[j]){
dp[i][j] = max + 1;
pre[i][j].x = tx;
pre[i][j].y = ty;
}
}
}
//找到LCIS最后的数字的位置
max = -1;
for (i = 1; i <= len2; ++i){
if (dp[len1][i] > max){
max = dp[len1][i];
id_y = i;
}
}
id_x = len1;
index = 0;
while (dp[id_x][id_y] != 0){
tmpx = pre[id_x][id_y].x;
tmpy = pre[id_x][id_y].y;
//若找到前一对公共点,则添加进路径
if (dp[tmpx][tmpy] != dp[id_x][id_y]){
path[index] = seq2[id_y];
++index;
}
id_x = tmpx;
id_y = tmpy;
}
return max;
} int main(void){
int i;
while (scanf("%d", &len1) != EOF){
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]); printf("%d\n", LCIS());
--index;
if (index >= 0)
printf("%d", path[index]);
for (i = index - 1; i >= 0; --i){
printf(" %d", path[i]);
}
printf("\n");
} return 0;
}

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章

  1. POJ 2127 Greatest Common Increasing Subsequence

    You are given two sequences of integer numbers. Write a program to determine their common increasing ...

  2. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  6. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  7. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  8. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. java.io.File中的pathSeparator与separator的区别

    先总的说一下区别:File.pathSeparator指的是分隔连续多个路径字符串的分隔符,例如:java   -cp   test.jar;abc.jar   HelloWorld就是指“;” Fi ...

  2. 【转】从开发者的角度看待各移动平台 ios/android/wp7/win8ost title

    T_T 这伪技术博客都快给写成Tron的读书笔记专栏了,这样可不行欸~ 如今正是移动平台的战国时期,厌烦了去讨论移动平台的未来,也无意于在HTML5和Native App之间纠结.本文只从开发者纯技术 ...

  3. 如何关闭UINavigationController 向右滑动 返回上一层视图

    说明一下: 我的nav 设置的rootview 是 tabbarcontroller,登录界面是push进去的,所以,在登录界面,如果靠近最左边 向右滑动 会出现 tabbarcontroller的视 ...

  4. android常见错误-

    将library中的报错项删除,然后点击[add]正确的appcompat

  5. W5500问题集锦(二)

    attachment_id=5620" rel="attachment wp-att-5620" style="margin:0px; padding:0px; ...

  6. 该优化针对Linux X86_X64环境

    http://netkiller.github.io/www/tomcat/server.html 1. Tomcat优化其实就是对server.xml优化(开户线程池,调整http connecto ...

  7. WIX在VS2012中如何制作中文安装包

    WIX安装图文并茂简易说明一文中介绍了WIX安装包的制作过程,不过生成的是英文版的,如果需要制作中文版的安装包呢? 方法很简单,只需要两步. 1.增加中文UI的文件WixUI_zh-cn.wxl到工程 ...

  8. iOS开发——开发技巧&Mac常用命令

    现实和隐藏文件拓展名 显示:defaults write com.apple.finder AppleShowAllFiles Yes && killall Finder 隐藏:def ...

  9. C++中如何修改const变量

      一.结论 声明:不同于C语言的const变量修改问题(可以通过指针间接修改const变量的值),这里只讨论C++ 里的const. C++ const 修饰符,表示常量,即如果以后保证不会修改则声 ...

  10. js获取光标位置例子

    <html><head><title>TEST</title><style>body,td { font-family: verdana, ...