题目地址:http://poj.org/problem?id=2127

Description

You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.


Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN
<= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

Input

Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

Output

On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of
them.

Sample Input

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度

状态转移方程:

dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k  < j

dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]

#include <stdio.h>
#include <string.h> #define MAX 501 typedef struct path{
int x, y;
}Pre; int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index; int LCIS(){
int i, j;
int max, tx, ty;
int id_x, id_y;
int tmpx, tmpy;
//给dp[i][j]、pre[i][j]置初值
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
for (i = 1; i <= len1; ++i){
max = 0;
tx = ty = 0;
for (j = 1; j <= len2; ++j){
//状态转移方程
dp[i][j] = dp[i-1][j];
pre[i][j].x = i - 1;
pre[i][j].y = j;
if (seq1[i] > seq2[j] && max < dp[i-1][j]){
max = dp[i-1][j];
tx = i - 1;
ty = j;
}
if (seq1[i] == seq2[j]){
dp[i][j] = max + 1;
pre[i][j].x = tx;
pre[i][j].y = ty;
}
}
}
//找到LCIS最后的数字的位置
max = -1;
for (i = 1; i <= len2; ++i){
if (dp[len1][i] > max){
max = dp[len1][i];
id_y = i;
}
}
id_x = len1;
index = 0;
while (dp[id_x][id_y] != 0){
tmpx = pre[id_x][id_y].x;
tmpy = pre[id_x][id_y].y;
//若找到前一对公共点,则添加进路径
if (dp[tmpx][tmpy] != dp[id_x][id_y]){
path[index] = seq2[id_y];
++index;
}
id_x = tmpx;
id_y = tmpy;
}
return max;
} int main(void){
int i;
while (scanf("%d", &len1) != EOF){
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]); printf("%d\n", LCIS());
--index;
if (index >= 0)
printf("%d", path[index]);
for (i = index - 1; i >= 0; --i){
printf(" %d", path[i]);
}
printf("\n");
} return 0;
}

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章

  1. POJ 2127 Greatest Common Increasing Subsequence

    You are given two sequences of integer numbers. Write a program to determine their common increasing ...

  2. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  6. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  7. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  8. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. inferred 和 freefrom

    “Inferred” is the default setting for storyboards and it means the scene will show a navigation bar ...

  2. Android设计模式系列--原型模式

    CV一族,应该很容易理解原型模式的原理,复制,粘贴完后看具体情况是否修改,其实这就是原型模式.从java的角度看,一般使用原型模式有个明显的特点,就是实现cloneable的clone()方法.原型模 ...

  3. Windows Server 2012配置开机启动项

    1.运行 shell:startup 命令,如下:

  4. python会什么比c慢

    众所周知,python执行速度比c慢.原因为何? 先来看下面这张图: python的传统运行执行模式:录入的源代码转换为字节码,之后字节码在python虚拟机中运行.代码自动被编译,之后再解释成机器码 ...

  5. 在Image控件中绘制文字

    //Canvas 在Image控件中绘制文字 procedure TForm1.Button1Click(Sender: TObject);begin  image1.Canvas.Font.Size ...

  6. 开发腾讯移动游戏平台SDK ios版Ane扩展 总结

    本文记录了在开发 腾讯移动游戏平台SDK(MSDK) ios版Ane扩展 过程中所遇到的问题 文中非常多问题都是基础的问题.对object c和xcode配置了解不深入导致的.(没办法,开发ane的程 ...

  7. Java中的NIO和IO的对比分析

    总的来说,java中的IO和NIO主要有三点区别: IO NIO 面向流 面向缓冲 阻塞IO 非阻塞IO 无 选择器(Selectors) 1.面向流与面向缓冲 Java NIO和IO之间第一个最大的 ...

  8. taobao月报 ---mysql汇总

    http://blog.csdn.net/qiuyepiaoling/article/category/709481

  9. STL——空间的配置和释放std::alloc(第一级配置器和第二级配置器)

    1 空间的配置和释放,std::alloc 对象构造前的空间配置和对象析构后的空间释放,由<stl_alloc.h>负责,SGI对此的设计哲学如下: 向system heap要求空间 考虑 ...

  10. 面试题总结之Linux/Shell

    Linux Linux cshrc文件作用 Linux如何起进程/查看进程/杀进程 Linux 文件755 代表什么权限 Linux辅助线程 Linux进程间通信方法 pipeline,msgq... ...