mapreduce 实现pagerank
输入格式:
A 1 B,C,D
B 1 C,D
map:
B A 1/3
C A 1/3
D A 1/3
A |B,C,D
C B 1/2
D B 1/2
B |C,D
reduce:
B (1-0.85)+0.85*1/3 C,D C (1-0.85)+0.85*5/6
D (1-0.85)+0.85*5/6
A (1-0.85)+0.85*0 B,C,D import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class PageRankIter {
private static final double damping = 0.85; public static class PRIterMapper extends
Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] tuple = line.split("\t");
String pageKey = tuple[0];
double pr = Double.parseDouble(tuple[1]); if (tuple.length > 2) {
String[] linkPages = tuple[2].split(",");
for (String linkPage : linkPages) {
String prValue =
pageKey + "\t" + String.valueOf(pr / linkPages.length);
context.write(new Text(linkPage), new Text(prValue));
}
context.write(new Text(pageKey), new Text("|" + tuple[2]));
}
}
} public static class PRIterReducer extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String links = "";
double pagerank = 0;
for (Text value : values) {
String tmp = value.toString(); if (tmp.startsWith("|")) {
links = "\t" + tmp.substring(tmp.indexOf("|") + 1);// index从0开始
continue;
} String[] tuple = tmp.split("\t");
if (tuple.length > 1)
pagerank += Double.parseDouble(tuple[1]);
}
pagerank = (double) (1 - damping) + damping * pagerank; // PageRank的计算迭代公式
context.write(new Text(key), new Text(String.valueOf(pagerank) + links));
} } public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job2 = new Job(conf, "PageRankIter");
job2.setJarByClass(PageRankIter.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(Text.class);
job2.setMapperClass(PRIterMapper.class);
job2.setReducerClass(PRIterReducer.class);
FileInputFormat.addInputPath(job2, new Path(args[0]));
FileOutputFormat.setOutputPath(job2, new Path(args[1]));
job2.waitForCompletion(true);
}
}
输入为上述的输出
输入格式为:
A pr
B pr
... import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class PageRankViewer {
public static class PageRankViewerMapper extends
Mapper<LongWritable, Text, FloatWritable, Text> {
private Text outPage = new Text();
private FloatWritable outPr = new FloatWritable(); public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] line = value.toString().split("\t");
String page = line[0];
float pr = Float.parseFloat(line[1]);
outPage.set(page);
outPr.set(pr);
context.write(outPr, outPage);
}
} /**重载key的比较函数,使其经过shuffle和sort后反序(从大到小)输出**/
public static class DescFloatComparator extends FloatWritable.Comparator {
// @Override
public float compare(WritableComparator a,
WritableComparable<FloatWritable> b) {
return -super.compare(a, b);
} public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return -super.compare(b1, s1, l1, b2, s2, l2);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job3 = new Job(conf, "PageRankViewer");
job3.setJarByClass(PageRankViewer.class);
job3.setOutputKeyClass(FloatWritable.class);
job3.setSortComparatorClass(DescFloatComparator.class);
job3.setOutputValueClass(Text.class);
job3.setMapperClass(PageRankViewerMapper.class);
FileInputFormat.addInputPath(job3, new Path(args[0]));
FileOutputFormat.setOutputPath(job3, new Path(args[1]));
job3.waitForCompletion(true);
}
}
mapreduce 实现pagerank的更多相关文章
- Hadoop实战训练————MapReduce实现PageRank算法
经过一段时间的学习,对于Hadoop有了一些了解,于是决定用MapReduce实现PageRank算法,以下简称PR 先简单介绍一下PR算法(摘自百度百科:https://baike.baidu.co ...
- MapReduce实现PageRank算法(邻接矩阵法)
前言 之前写过稀疏图的实现方法,这次写用矩阵存储数据的算法实现,只要会矩阵相乘的话,实现这个就很简单了.如果有不懂的可以先看一下下面两篇随笔. MapReduce实现PageRank算法(稀疏图法) ...
- MapReduce实现PageRank算法(稀疏图法)
前言 本文用Python编写代码,并通过hadoop streaming框架运行. 算法思想 下图是一个网络: 考虑转移矩阵是一个很多的稀疏矩阵,我们可以用稀疏矩阵的形式表示,我们把web图中的每一个 ...
- PageRank算法简介及Map-Reduce实现
PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank Pag ...
- Mapreduce -- PageRank
PageRank 简单理解为网页排名,但是网页是根据什么排名的,接下来就简单介绍一下. 举例: 假设网页 A 的内容中有网页 B,C 和 D 的链接,并且 A 的 PageRank的值为0.25. 那 ...
- 升级版:深入浅出Hadoop实战开发(云存储、MapReduce、HBase实战微博、Hive应用、Storm应用)
Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系 ...
- PageRank算法--从原理到实现
本文将介绍PageRank算法的相关内容,具体如下: 1.算法来源 2.算法原理 3.算法证明 4.PR值计算方法 4.1 幂迭代法 4.2 特征值法 4.3 代数法 5.算法实现 5.1 基于迭代法 ...
- 数据挖掘之权重计算(PageRank)
刘 勇 Email:lyssym@sina.com 简介 鉴于在Web抓取服务和文本挖掘之句子向量中对权重值的计算需要,本文基于MapReduce计算模型实现了PageRank算法.为验证本文算法 ...
- PageRank 算法简介
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...
随机推荐
- JSONP跨域原理和jQuery.getJSON用法
JSONP是一个非官方的协议,它允许在服务器端集成Script tags返回至客户端,通过javascript callback的形式实现跨域访问(这仅仅是JSONP简单的实现形式).本文主要介绍JS ...
- POJ 1679 The Unique MST (最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- Wonderful Sentense
1.Sorry if I might sound arrogant or offensive. 2.Any further question? 3.How dare you! 4.Try it if ...
- canvas基础2--绘制图形
栅格 绘制矩形 不同于SVG,HTML中的元素canvas只支持一种原生的图形绘制:矩形.所有其他的图形的绘制都至少需要生成一条路径.不过,我们拥有众多路径生成的方法让复杂图形的绘制成为了可能. 首先 ...
- Backbone.js学习之Model
首先,我们看一下官方文档中对Model的解释(或者说定义): Models are the heart of any JavaScript application, containing the in ...
- 使用命令修改ip地址
简述:以serverv 2012 r2为例 常用的几种,当然不全,希望能较快的速率记下一种便可 直接配置 1. 查看网卡的显示名称 2. 配置静态iP地址 3. 查看配置 ...
- swift 闭包简写实际参数名$0、$1等理解
Swift 自动对行内闭包提供简写实际参数名,你也可以通过 $0 , $1 , $2 等名字来引用闭包的实际参数值. 如果你在闭包表达式中使用这些简写实际参数名,那么你可以在闭包的实际参数列表中忽略对 ...
- Cocos2d-JS中JavaScript继承
JavaScript语言本身没有提供类,没有其它语言的类继承机制,它的继承是通过对象的原型实现的,但这不能满足Cocos2d-JS引擎的要求.由于Cocos2d-JS引擎是从Cocos2d-x演变而来 ...
- 【学习笔记】【C语言】赋值运算
将某一数值赋给某个变量的过程,称为赋值. 1. 简单赋值 C语言规定,变量要先定义才能使用,也可以将定义和赋值在同一个语句中进行 int a = 10 + 5;的运算过程 a = b = 10;的运算 ...
- 初识 Jenkins
Jenkins: Jenkins 是一款获奖的跨平台持续集成和持续交付软件,可以大大提高生产力.Jenkins 用以构建和测试软件项目,帮助开发者更容易的实现项目变更的持续集成,帮助用户更容易的获取最 ...