稀疏自动编码之反向传播算法(BP)
假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数:
那么整个训练集的损失函数定义如下:
第一项是所有样本的方差的均值。第二项是一个归一化项(也叫权重衰减项),该项是为了减少权连接权重的更新速度,防止过拟合。
我们的目标是最小化关于 W 和 b 的函数J(W,b). 为了训练神经网络,把每个参数 和
初始化为很小的接近于0的随机值(例如随机值由正态分布Normal(0,ε2)采样得到,把 ε 设为0.01), 然后运用批量梯度下降算法进行优化。由于 J(W,b) 是一个非凸函数,梯度下降很容易收敛到局部最优,但是在实践中,梯度下降往往可以取得不错的效果。最后,注意随机初始化参数的重要性,而不是全部初始化为0. 如果所有参数的初始值相等,那么所有的隐层节点会输出会全部相等,因为训练集是一样的,即输入一样,如果每个模型的参数还都一样,输出显然会相同,这样不论更新多少次参数,所有的参数还是会相等。随机初始化各个参数就是为了防止这种情况发生。
梯度下降每一次迭代用下面的方式更新参数W 和 b:
其中 α 是学习率。上述迭代的关键是计算偏导数。我们将给出一种方向传播算法,能够高效地计算这些偏导数。
由上面的总体的损失函数公式, 很容易得到偏导数公式如下:
反向传播算法的思想是:给定某个训练样本(x,y),首先进行“前向传播”计算出整个网络中所有节点的激活值,包括输出节点的输出值。那么对于 l 层的节点 i ,计算它的“残差” ,这个残差用来衡量该节点对输出的残差产生了多大程度的影响。对于输出节点,我们可以直接比较出网络的激活值与真正的目标值之间的残差,即
(nl 层就是输出层) 。对于隐层节点,我们用 l+1 层残差的加权平均值和 l 层的激活值来计算
.
下面详细给出了反向传播算法的步骤:
1. 进行前馈传播,计算每一层的中所有节点的激活值
2. 对于输出层(第nl 层)的节点 i 的残差:
这里需要注意: 表示第 l 层节点 i 的所有输出之和,f 是激活函数,例如
,
等,另外,最后一层(输出层)的假设函数
的输出值就是该层节点的激活值。
3. 对于
4. 计算偏导数:
下面用矩阵-向量化的操作方式重写这个算法。其中""表示matlab中的点乘。对于
同样向量化,
也作同样处理,即
.
BP算法重写如下:
1. 进行前馈传播,计算每一层的中所有节点的激活值
2. 对于输出层(第nl 层)的节点 i 的残差:
3. 对于
4. 计算偏导数:
注意:在上面的第2步和第3步,,我们需要为每一个 节点 i 计算其 . 假设
是sigmoid激活函数,在前向传播的过程中已经存储了所有节点的激活值
,因此利用我们在
稀疏自动编码之神经网络
中推导出的sigmoid激活函数的导数求法:对于sigmoid函数f(z) = 1 / (1 + exp( − z)),它的导函数为f'(z) = f(z)(1 − f(z)).可以提前算出,这里用到我们上面提到的
.
最后,给出完整的梯度下降法.在下面的伪代码中,
都是矩阵,
,
是向量。
1. 对于每一层,即所有 l , ,
(设置为全零矩阵或者向量)
2. 从第一个训练样本开始,一直到最后一个(第 m 个训练样本):
a. 用反向传播计算 和
b. .
c. .
3. 更新参数:
现在,我们可以重复梯度下降法的迭代步骤来减小损失函数 的值,进而训练出我们的神经网络。
学习来源:http://deeplearning.stanford.edu/wiki/index.php/Backpropagation_Algorithm
稀疏自动编码之反向传播算法(BP)的更多相关文章
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 【机器学习】反向传播算法 BP
知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的单元 ...
- 神经网络与机器学习 笔记—反向传播算法(BP)
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于 ...
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- 机器学习 —— 基础整理(七)前馈神经网络的BP反向传播算法步骤整理
这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使 ...
- 【深度学习】BP反向传播算法Python简单实现
转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读 ...
- 反向传播(BP)算法理解以及Python实现
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...
- 人工神经网络反向传播算法(BP算法)证明推导
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...
随机推荐
- Android学习之散乱的知识点
1. 安卓广告知名平台:有米,哇棒,架势,admob(国外,但效果不好)等,推荐用有米 2. src目录为源文件目录,所有可以被用户修改和创建的Java文件将被存放在这个目录下 3. xml中引用st ...
- java 抽象类和接口
接口和内部类为我们提供了一种将接口与实现分离的更加结构化的方法. 抽象类与接口是java语言中对抽象概念进行定义的两种机制,正是由于他们的存在才赋予java强大的面向对象的能力.他们两者之间对抽象概念 ...
- WCF寄宿方式
WCF开发框架形成之旅---WCF的几种寄宿方式 WCF寄宿方式是一种非常灵活的操作,可以在IIS服务.Windows服务.Winform程序.控制台程序中进行寄宿,从而实现WCF服务的运行,为调用者 ...
- phpcms学习总结
文件目录结构 根目录 | – api 接口文件目录 | – caches 缓存文件目录 | – configs 系统配置文件目录 | – caches_* 系统缓存目录 | – phpcms phpc ...
- android参考
android:使用BaseExpandableListAdapter实现可折叠的列表 Android-ListView实现SectionIndexer SectionIndexer 的使用(联系人分 ...
- 了解JBoss Drools Engine
说一个自己比较喜欢的开源产品JBoss Drools, 很多企业内部大型项目都在使用的规则引擎该怎么理解规则引擎,到底是个什么东西,我好像没听过,我们能用么. 它是配有内置算法及对应数据结构的计算容器 ...
- HDU-3401 Trade 单调队列优化DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3401 DP方程容易想出来,f[i][j]表示第i天拥有j个股票的最优解,则: 1.不买不卖,f[i][ ...
- air 移动开发配置文件详解
转自http://www.badyoo.com/index.php/2012/09/12/208/index.html 目录 所需的 AIR 运行时版本 应用程序标识 应用程序版本 主应用程序 SWF ...
- cocos2d-html5在cocos2d-x里面打包编译
main.cpp打开USE_WIN32_CONSOLE输出 #include "main.h" #include "AppDelegate.h" #includ ...
- js 生成随机数
<script> function GetRandomNum(Min,Max){ var Range = Max - Min; var Rand = Math.random() ...