GPU Accelerated Computing with Python
https://developer.nvidia.com/how-to-cuda-Python
python is one of the fastest growing and most popular programming languages available. However, as an interpreted language, it has been considered too slow for high-performance computing. That has now changed with the release of the NumbaPro Python compiler from Continuum Analytics.
CUDA Python – Using the NumbaPro Python compiler, which is part of the Anaconda Accelerate package from Continuum Analytics, you get the best of both worlds: rapid iterative development and all other benefits of Python combined with the speed of a compiled language targeting both CPUs and NVIDIA GPUs.
Getting Started
- If you are new to Python, the python.org website is an excellent source for getting started material.
- Read this blog post if you are unsure what CUDA or GPU Computing is all about.
- Try CUDA by taking a self-paced lab on nvidia.qwiklab.com. These labs only require a supported web browser and a network that allows Web Sockets. Click here to verify that your network & system support Web Sockets in section "Web Sockets (Port 80)", all check marks should be green.
- Watch the first CUDA Python CUDACast:
- Install Anaconda Accelerate
- First install the free Anaconda package from this location.
- Once Anaconda is installed, you can install a trial-version of the Accelerate package by using Anaconda’s package manager and running conda install accelerate. See here for more detailed information. Please note that the Anaconda Accelerate package is free for Academic use.
Learning CUDA
- For documentation, see the Continuum website for these various topics:
- Browse through the following code examples:
- You can download the following IPython Notebooks and (after installing Anaconda Accelerate) execute them locally on your own system which has an NVIDIA GPU:
- Browse and ask questions on NVIDIA’s DevTalk forums, or ask at stackoverflow.com.
So, now you’re ready to deploy your application?
You can register today to have FREE access to NVIDIA TESLA K40 GPUs.
Develop your codes on the fastest accelerator in the world. Try a Tesla K40 GPU and accelerate your development.
Performance/Results
- It’s possible to get enormous speed-up, 20x-2000x, when moving from a pure Python application to accelerating the critical functions on the GPUs. In many cases, with little changes required in the code. Some simple examples demonstrating this can be found here:
- A MandelBrot example accelerated with CUDA Python. 19x speed-up over the CPU-only accelerated version using GPUs and a 2000x speed-up over pure interpreted Python code.
- A Monte Carlo Option Pricer example accelerated with CUDA Python. Achieved a 30x speed-up over interpreted Python code after accelerating on the GPU.
Alternative Solution - PyCUDA
Another option for accelerating Python code on a GPU is PyCUDA. This library allows you to call the CUDA Runtime API or kernels written in CUDA C from Python and execute them on the GPU. One use case for this is using Python as a wrapper to your CUDA C kernels for rapid development and testing.
GPU Accelerated Computing with Python的更多相关文章
- Chromium Graphics : GPU Accelerated Compositing in Chrome
GPU Accelerated Compositing in Chrome Tom Wiltzius, Vangelis Kokkevis & the Chrome Graphics team ...
- INTERSPEECH 2015 | Scalable Distributed DNN Training Using Commodity GPU Cloud Computing
一般来说,全连接层的前向和后向传递所需的计算量与权重的数量成正比.此外,数据并行训练中所需的带宽与可训练权重的数量成比例.因此,随着每个节点计算速度的提高,所需的网络带宽也随之增加.这篇文章主要是根据 ...
- Python的GPU编程实例——近邻表计算
技术背景 GPU加速是现代工业各种场景中非常常用的一种技术,这得益于GPU计算的高度并行化.在Python中存在有多种GPU并行优化的解决方案,包括之前的博客中提到的cupy.pycuda和numba ...
- 常用python机器学习库总结
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...
- 大数据分析与机器学习领域Python兵器谱
http://www.thebigdata.cn/JieJueFangAn/13317.html 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/ ...
- Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱(转)
原文:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开 ...
- [转载]Python兵器谱
转载自:http://www.52nlp.cn/python-网页爬虫-文本处理-科学计算-机器学习-数据挖掘 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然 ...
- Python相关机器学习‘武器库’
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...
- Python Tools for Machine Learning
Python Tools for Machine Learning Python is one of the best programming languages out there, with an ...
随机推荐
- Android:android sdk源码中怎么没有httpclient的源码了
欢迎关注公众号,每天推送Android技术文章,二维码如下:(可扫描) 今天想使用这个API,怎么也找不到.废了好多时间... 查阅资料才知道如下解释: 在android 6.0(API 23)中,G ...
- 在 root 下执行 Oracle 程序时找不到 libclntsh.so.11.1 错误的解决办法。
在 root 下执行 Oracle 程序时找不到 libclntsh.so.11.1 错误的解决办法. 先确定 libclntsh.so.11.1 所在目录: [oracle@localhost ~] ...
- Java创建二叉搜索树,实现搜索,插入,删除操作
Java实现的二叉搜索树,并实现对该树的搜索,插入,删除操作(合并删除,复制删除) 首先我们要有一个编码的思路,大致如下: 1.查找:根据二叉搜索树的数据特点,我们可以根据节点的值得比较来实现查找,查 ...
- jdbc连接mysql加载驱动程序com.mysql.jdbc.Driver
在开发环境如eclipse,中加载指定数据库的驱动程序.需要下载MySQL支持JDBC的驱动程序mysql-connector-java-5.1.25-bin.jar. 而具体在Java程序中加载驱动 ...
- oracle的rownum与having用法 去除重复 在重复情况用rownum
一般来说,大家会用rownum,也就是伪列来指定要显示多条数据, 比如 select linename from aced where rownum<3 但是,大家注意,如果取出来的数据有重复数 ...
- iOS-导航头像缩放,支持点击回调
在很多App中,经常存在一种需求就是,界面上下滚动时用户的头像也会跟着滚动,而用户头像在视图向上滚动一定范围时停留并在导航栏的位置 基本用法如下:1.单纯的实现这一效果: - (LEOHeaderVi ...
- 【Unity Shaders】Diffuse Shading——使用2D ramp texture来创建一个假的BRDF(双向反射分布函数)
本系列主要参考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同时会加上一点个人理解或拓展. 这里是本书所有的插图.这里是本书所需的代码和资源 ...
- Java进阶(七)Java加密技术之非对称加密算法RSA
Java加密技术(四)--非对称加密算法RSA 非对称加密算法--RSA 基本概念 非对称加密算法是一种密钥的保密方法. 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(priv ...
- 跨平台移动APP开发进阶(二)HTML5+、mui开发移动app教程
前端开发APP,从HBuilder开始~ 序 通过 HTML5 开发移动App 时,会发现HTML5 很多能力不具备.为弥补HTML5 能力的不足,在W3C 中国的指导下成立了www.HTML5Plu ...
- 016-类与对象-OC笔记
学习目标 1.[理解]对象在内存中的存储 2.[理解]nil和NULL 3.[了解]#pragma mark分组导航标记 4.[理解]方法与函数 5.[掌握]多文件开发 6.[掌握]对象和方法 7.[ ...