一、总体框架

  deferred io机制主要用于驱动没有实现自刷新同时应用层又不想调用FBIOPAN_DISPLAY的一个折中方案,  使用ioctrl FBIOPAN_DISPLAY好处是节能, 驱动不用盲目的刷数据(尤其是一静态帧数据), 数据的更新是由应用程序操作的,

所以应用程序当然知道何时刷数据, 最理想的情况是应用程序一更新数据立马调用FBIOPAN_DISPLAY, 但也有缺点, 一是要应用层显示调用FBIOPAN_DISPLAY,二是画面更新频率高的话, FBIOPAN_DISPLAY带来的系统调用开支也不小;

使用驱动自刷新当然解放应用, 应用不用关心数据显示问题, 直接操作显存, 所写即所见。

二、源码分析

  代码具体在linux/drivers/video/fb_defio.c, 如下演示刷图穿插该框架的实现代码:

  1. fb_defio 自己实现一个mmap(), 没有将用户空间虚拟地址和物理帧缓存进行页表映射, 倒是提供了缺页异常处理函数

void fb_deferred_io_init(struct fb_info *info)
{
struct fb_deferred_io *fbdefio = info->fbdefio; BUG_ON(!fbdefio);
mutex_init(&fbdefio->lock);
info->fbops->fb_mmap = fb_deferred_io_mmap;
INIT_DELAYED_WORK(&info->deferred_work, fb_deferred_io_work);
INIT_LIST_HEAD(&fbdefio->pagelist);
if (fbdefio->delay == ) /* set a default of 1 s */
fbdefio->delay = HZ;
}
EXPORT_SYMBOL_GPL(fb_deferred_io_init); static int fb_deferred_io_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
vma->vm_ops = &fb_deferred_io_vm_ops;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
if (!(info->flags & FBINFO_VIRTFB))
vma->vm_flags |= VM_IO;
vma->vm_private_data = info;
return ;
} static const struct vm_operations_struct fb_deferred_io_vm_ops = {
.fault = fb_deferred_io_fault,
.page_mkwrite = fb_deferred_io_mkwrite,
};

  2. 应用程序通过mmap(), 获得一块帧缓存的虚拟地址, 但没有对应的实际物理内存

 

  3. 应用程序操作内存(write), 由于页表没有对应物理内存导致缺页异常

do_page_fault()
-> __do_page_fault()
-> handle_mm_fault()
-> __handle_mm_fault()
-> handle_pte_fault():
if (vma->vm_ops) {
if (likely(vma->vm_ops->fault))
return do_linear_fault(mm, vma, address, pte, pmd, flags, entry);
}
                -> __do_fault():
                 vma->vm_ops->fault(vma, &vmf);
                vma->vm_ops->page_mkwrite(vma, &vmf);

  从上面流程可以看出, 当vm_ops且fault有效时, 会走自定义的fault实现, 同时如果操作时write行为, 还会调用page_mkwrite(有效的话)

  4. fb_defio提供了缺页异常的处理函数fb_deferred_io_fault(), 分配物理页跟虚拟地址对应起来, 并把该物理页挂到fbdefio->pagelist(即将被刷新数据), 然后启动工作队列延迟delay后执行这个工作项fb_deferred_io_work()

static int fb_deferred_io_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
unsigned long offset;
struct page *page;
struct fb_info *info = vma->vm_private_data; offset = vmf->pgoff << PAGE_SHIFT;
if (offset >= info->fix.smem_len)
return VM_FAULT_SIGBUS; page = fb_deferred_io_page(info, offset);
if (!page)
return VM_FAULT_SIGBUS; get_page(page); if (vma->vm_file)
page->mapping = vma->vm_file->f_mapping;
else
printk(KERN_ERR "no mapping available\n"); BUG_ON(!page->mapping);
page->index = vmf->pgoff; vmf->page = page;
return ;
} static struct page *fb_deferred_io_page(struct fb_info *info, unsigned long offs)
{
void *screen_base = (void __force *) info->screen_base;
struct page *page; if (is_vmalloc_addr(screen_base + offs))
page = vmalloc_to_page(screen_base + offs);
else
page = pfn_to_page((info->fix.smem_start + offs) >> PAGE_SHIFT); return page;
} /* 需要注意的是帧缓存是一开始fb驱动就应该分配好的, 同时赋值给fb_info->screen_base, fb_info->fix.smem_start
* 而fb_deferred_io_fault()-> fb_deferred_io_page()分配内存只是找出并返回此次缺页异常页虚拟地址对应的物理地址,
* 好填充页表, 这样应用程序就可以正常write数据到缓存, 整个过程对应用程序是透明的。
*/

  5. fb_deferred_io_work() 最核心就是调用函数指针fbdefio->deferred_io(驱动要实现的刷数据函数), 并调用page_mkclean()将之前虚拟地址和帧物理页的映射清除, 使得下次操作这块虚拟地址又能重新触发缺页机制

  

二、fb驱动示例

static void lcd_fb_deferred_io(struct fb_info *info, struct list_head *pagelist)
{
struct page *cur;
struct fb_deferred_io *fbdefio = info->fbdefio; /* pagelist存放的都是被更新的脏页, 由于我驱动用SPI DMA搬数据,会存在cache不一致, 所以要把cache的缓存刷回内存 */
list_for_each_entry(cur, &fbdefio->pagelist, lru) {
flush_dcache_page(cur);
} /* 虽然pagelist存放都是脏页,我懒得对这些页在帧的位置进行排布分析, 直接一整帧都刷
也即哪怕应用程序改动一个page, 驱动都会整帧刷*/
info->fbops->fb_pan_display(&info->var , info);
} static struct fb_deferred_io gen_lcd_fb_defio = {
.delay = HZ / ,
.deferred_io = lcd_fb_deferred_io,
}; static void lcd_defio_init(struct fb_info *info, struct fb_deferred_io *fbdefio)
{
info->fbdefio = fbdefio;
fb_deferred_io_init(info);
} static void lcd_defio_cleanup(struct fb_info *info)
{
if (info->fbdefio != NULL) {
fb_deferred_io_cleanup(info);
info->fbdefio = NULL;
}
} ==========================================
lcd_defio_init(fb_dev, gen_lcd_fb_defio)
lcd_defio_cleanup(fb_dev)

三、其他

  1. 要使能deferred io机制, 要打开CONFIG_FB_DEFERRED_IO配置

  2. 这里没有帧率说法, 只跟应用刷图有关

  3. 缺页异常会被调用多次, 但fb_deferred_io_work()只会被最后页调用一次, 比如应用要刷,2个page, 第一个page导致fb_deferred_io_mkwrite()添加到pagelist, 然后调用schedule_delayed_work()启动延迟1/8s的工作项fb_deferred_io_work(),

   接着引发第二页缺页异常会被继续添加到pagelist, schedule_delayed_work再次被执行, 但只是重新更新延迟时间为1/8s

  4. 我感觉page_mkclean() 这里有个bug, 它是把物理页所有的映射都清除, 包括kernel空间的虚拟地址, 那下次缺页异常时fb_deferred_io_page() -> vmalloc_to_page(screen_base + offs), 就会有问题, 因为页表被清除掉了, 所以该框架目前应该只支持连续的帧缓存

Linux framebuffer deferred io机制的更多相关文章

  1. Linux framebuffer deferred io机制【转】

    转自:https://www.cnblogs.com/vedic/p/10722514.html 一.总体框架 deferred io机制主要用于驱动没有实现自刷新同时应用层又不想调用FBIOPAN_ ...

  2. Linux的io机制

    Linux的io机制 Buffered-IO 和Direct-IO Linux磁盘I/O分为Buffered IO和Direct IO,这两者有何区别呢? 对于Buffered IO: 当应用程序尝试 ...

  3. linux下epoll实现机制

    linux下epoll实现机制 原作者:陶辉 链接:http://blog.csdn.net/russell_tao/article/details/7160071 先简单回顾下如何使用C库封装的se ...

  4. 深入理解JAVA I/O系列六:Linux中的IO模型

    IO模型 linux系统IO分为内核准备数据和将数据从内核拷贝到用户空间两个阶段. 这张图大致描述了数据从外部磁盘向运行中程序的内存中移动的过程. 用户空间.内核空间 现在操作系统都是采用虚拟存储器, ...

  5. Linux优化之IO子系统监控与调优

    Linux优化之IO子系统 作为服务器主机来讲,最大的两个IO类型 : 1.磁盘IO 2.网络IO 这是我们调整最多的两个部分所在 磁盘IO是如何实现的 在内存调优中,一直在讲到为了加速性能,linu ...

  6. Linux SCSI回调IO的分析

    本文转载自:http://blog.csdn.net/xushiyan/article/details/6941640,如需参考,请访问原始链接地址. 没找到如何转载的入口,只好全文copy了. -- ...

  7. 深入理解JAVA I/O系列六:Linux中的IO模型(转载的文章非常值得学习)

    From:http://www.cnblogs.com/dongguacai/p/5770287.html IO模型 linux系统IO分为内核准备数据和将数据从内核拷贝到用户空间两个阶段. 这张图大 ...

  8. [转载] Linux五种IO模型

      转载:http://blog.csdn.net/jay900323/article/details/18141217     Linux五种IO模型性能分析   目录(?)[-] 概念理解 Lin ...

  9. Linux Framebuffer驱动剖析之一—软件需求

    嵌入式企鹅圈将以本文作为2015年的终结篇,以回应第一篇<Linux字符设备驱动剖析>.嵌入式企鹅圈一直专注于嵌入式Linux和物联网IOT两方面的原创技术分享,稍后会发布嵌入式企鹅圈的2 ...

随机推荐

  1. 将外部dwg图纸中指定带属性的块插入到当前图纸中

    static void InsertBlock() { //获取要插入的块名 TCHAR str[40]; acedGetString(Adesk::kFalse, _T("\n请输入要插入 ...

  2. setUp()和tearDown()函数

    1.什么是setUp()和tearDown()函数? 2.为什么我们要用setUp()和tearDown()函数? 3.我们该怎样用setUp()和tearDown()? 1.什么是setUp()和t ...

  3. 在javaScript中检测数据类型的几种方式

    类型检测的方法 typeof instanceof Object.protype.toString constructor duck type:鸭子类型 typeof 返回一个字符串,适合函数对象和基 ...

  4. 【工具篇】接口测试神器 -- Postman 入门教程

    一.Postman概述 (1)工具介绍 Postman是一个接口测试工具,一款非常流行的API调试工具.在做接口测试的时候,Postman相当于一个客户端,它可以模拟用户发起的各类HTTP请求,将请求 ...

  5. ASP.NET Core 实战:基于 Dapper 扩展你的数据访问方法

    一.前言 在非静态页面的项目开发中,必定会涉及到对于数据库的访问,最开始呢,我们使用 Ado.Net,通过编写 SQL 帮助类帮我们实现对于数据库的快速访问,后来,ORM(Object Relatio ...

  6. 手写DotNet Core 认证授权代码

    在普通的MVC项目中 我们普遍的使用Cookie来作为认证授权方式,使用简单.登录成功后将用户信息写入Cookie:但当我们做WebApi的时候显然Cookie这种方式就有点不适用了. 在dotnet ...

  7. COW奶牛!Copy On Write机制了解一下

    前言 只有光头才能变强 在读<Redis设计与实现>关于哈希表扩容的时候,发现这么一段话: 执行BGSAVE命令或者BGREWRITEAOF命令的过程中,Redis需要创建当前服务器进程的 ...

  8. <<C语言--神奇的指针>>

    指针很简单 ------引子 学计算机语言,首先推荐C语言.无论是数据结构还是算法,站在C语言的角度,会让我们理解的更加清晰透彻. 但是,指针不太"友好",让很多人抓狂,头疼.不少 ...

  9. Html5知识点

    学习资料:http://how2j.cn/p/1036 周期:3天 github:https://github.com/BenCoper/Html5欢迎大家去Star以及Fork 总结:采用的都是ht ...

  10. DataPipeline丨金融行业如何统一管理单个任务下所有API的同步情况

    目前,依靠"手工人力"的电子表格数据治理模式逐渐被"自动智能"的专业工具取代.数据管理员.业务分析师开始采用"平台工具"来梳理主数据.元数据 ...