BZOJ 3907: 网格 [Catalan数 高精度]
3907: 网格
Time Limit: 1 Sec Memory Limit: 256 MB
Submit: 402 Solved: 180
[Submit][Status][Discuss]
Description
.png)
Input
输入文件中仅有一行,包含两个整数n和m,表示城市街区的规模。
Output
输出文件中仅有一个整数和一个换行/回车符,表示不同的方案总数。
你们出题人有意思吗,变式套上高精度又一道题.....
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e4+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m;
bool notp[N];
int p[N],lp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i,lp[i]=p[];
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
lp[i*p[j]]=j;
if(i%p[j]==) break;
}
}
}
struct Big{
int d[N],l;
Big():l(){memset(d,,sizeof(d));d[]=;}
int& operator[](int x){return d[x];}
}a,b;
void Mul(Big &a,int b){
int g=;
for(int i=;i<=a.l;i++){
g+=a[i]*b;
a[i]=g%;
g/=;
}
for(;g;g/=) a[++a.l]=g%;
}
void Minus(Big &a,Big &b){
for(int i=;i<=b.l;i++){
if(a[i]<b[i]) a[i]+=,a[i+]--;
a[i]-=b[i];
}
int p=b.l+;
while(a[p]<) a[p]+=,a[p+]--;
while(a[a.l]==) a.l--;
}
void Print(Big &a){
for(int i=a.l;i>=;i--) printf("%d",a[i]);
} int e[N];
inline void add(int x,int d){
while(x!=){
e[lp[x]]+=d;
x/=p[lp[x]];
}
}
void C(int n,int m,Big &ans){
memset(e,,sizeof(e));
for(int i=n;i>=n-m+;i--) add(i,);
for(int i=;i<=m;i++) add(i,-);
for(int j=;j<=p[];j++) for(;e[j];e[j]--) Mul(ans,p[j]);
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
sieve(n+m);
C(n+m,n,a);
C(n+m,n+,b);
Minus(a,b);
Print(a);
}
BZOJ 3907: 网格 [Catalan数 高精度]的更多相关文章
- POJ 2084 Catalan数+高精度
POJ 2084 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:42 * ...
- HDU 1023 Catalan数+高精度
链接:HDU 1023 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:5 ...
- BZOJ 3907: 网格( 组合数 + 高精度 )
(0,0)->(n,m)方案数为C(n,n+m), 然后减去不合法的方案. 作(n,m)关于y=x+1的对称点(m-1,n+1), 则(0,0)->(m-1,n+1)的任意一条路径都对应( ...
- BZOJ 3907: 网格
Description 求不跨过直线 \(y=x\) ,到达 \((n,m)\) 的方案数. Sol 组合数学+高精度. 这个推导过程跟 \(Catalan\) 数是一样的. 答案就是 \(C^{n+ ...
- bzoj 3907: 网格 组合数学
3907: 网格 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 13 Solved: 7[Submit][Status][Discuss] Descr ...
- bzoj 3907 网格 bzoj2822 [AHOI2012]树屋阶梯——卡特兰数(阶乘高精度模板)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 https://www.lydsy.com/JudgeOnline/problem.p ...
- BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]
2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 779 Solved: 453[Submit][Status] ...
- BZOJ 3907: 网格【组合数学】
Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m.现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过 ...
- 【BZOJ 3907】网格(Catalan数)
题目链接 这个题推导公式跟\(Catalan\)数是一样的,可得解为\(C_{n+m}^n-C_{n+m}^{n+1}\) 然后套组合数公式\(C_n^m=\frac{n!}{m!(n-m)!}\) ...
随机推荐
- Centos7网络配置-转载
一. 查看网络地址: centos7取消了ifconfig命令,使用ip addr命令查看IP地址 二.配置网络 用VirtualBox安装的CentOS7,安装完成后,发现无法上网,于是到网上查了一 ...
- ReentrantLock与Condition构造有界缓存队列与数据栈
通过ReentrantLock与Condition的设计,以数组为基础,可以实现简单的队列和栈的数据结构,临界阻塞的效果. ReentrantLock相对于synchronized比较大的一个区别是有 ...
- JavaScript八张思维导图—数组用法
JS基本概念 JS操作符 JS基本语句 JS数组用法 Date用法 JS字符串用法 JS编程风格 JS编程实践 不知不觉做前端已经五年多了,无论是从最初的jQuery还是现在火热的Angular,Vu ...
- Oracle:FOR循环语句练习
--打印输出从1到10的正整数DECLARE v_i NUMBER(10) := 0;BEGIN LOOP v_i := v_i + 1; DBMS_OUTPUT.put_line(v_i); EXI ...
- 百度地图API显示多个标注点带百度样式信息检索窗口的代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- PHP网站从Apache转移到Nginx后产生404错误的原因和解决办法
原案例分析: 1.原来的网站在wamp环境下搭建完成,一切正常,上传到虚拟主机环境为lnmp,结果访问时可以打开主页,然后点其他页面全部报404错误: 2.经分析得出原因:原网站环境为wamp使用了伪 ...
- dedecms====phpcms 区别==[工作]
{template "content","header"}{dede:include filename="head.htm"/} ----- ...
- ngRx 官方示例分析 - 6 - Effect
@ngrx/effect 前面我们提到,在 Book 的 reducer 中,并没有 Search 这个 Action 的处理,由于它需要发出一个异步的请求,等到请求返回前端,我们需要根据返回的结果来 ...
- ios知识点总结——UITableView的展开与收缩及横向Table
UITableVIew是iOS开发中使用最为广泛的一种控件,对于UITableView的基本用法本文不做探讨,本文主要是针对UITableView的展开与收缩进行阐述,在文章的后面也会探讨一下横向ta ...
- HTML <td> 标签的 rowspan 属性
rowspan 属性规定单元格可横跨的行数. colspan 属性规定单元格可横跨的列数.