题目描述

N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。 
例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

输入

第一行是n(1<=n<=2000); 
第二行是s(0<=s<=50)。 
下面n行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

输出

一个数,最小的总费用。

样例输入

5
1
1 3
3 2
4 3
2 3
1 4

样例输出

153
 
题解:
简单dp,给予我一点启发,此题看似具有后效性,但要意识到如果一启动机器,那么对后面所有的任务都会产生s的贡献,所以可以把s的贡献一开始就算进去 所以转移方程写成:F[i]=min(F[i],F[j]+st[i]*(sf[i]-sf[j])+s*(sf[n]-sf[j]))
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int gi(){
int str=,f=;char ch=getchar();
while(ch>'' || ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<='')str=str*+ch-'',ch=getchar();
return str*f;
}
int st[N],sf[N],F[N];
int main()
{
int n=gi(),s=gi(),x,y;
for(int i=;i<=n;i++)
{
x=gi();y=gi();
st[i]=st[i-]+x;
sf[i]=sf[i-]+y;
F[i]=2e9;
}
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
F[i]=min(F[i],F[j]+st[i]*(sf[i]-sf[j])+s*(sf[n]-sf[j]));
}
}
printf("%d",F[n]);
return ;
}

【LSGDOJ 1333】任务安排 dp的更多相关文章

  1. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  2. [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1580  Solved: 466[Submit][Statu ...

  3. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  4. DP学习记录Ⅰ

    DP学习记录Ⅱ 前言 状态定义,转移方程,边界处理,这三部分想好了,就问题不大了.重点在状态定义,转移方程是基于状态定义的,边界处理是方便转移方程的开始的.因此最好先在纸上写出自己状态的意义,越详细越 ...

  5. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  6. 项目安排(离散化+DP)

    题目来源:网易有道2013年校园招聘面试二面试题 题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的 ...

  7. 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP

    [BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...

  8. HDU-4532 湫秋系列故事——安排座位 组合数学DP

    题意:有来自n个专业的学生,每个专业分别有ai个同学,现在要将这些学生排成一行,使得相邻的两个学生来自不同的专业,问有多少种不同的安排方案. 分析:首先将所有专业的学生视作一样的,最后再乘以各自学生的 ...

  9. 火车安排问题(dp好题)

    火车站内往往设有一些主干线分叉出去的铁路支路,供火车停靠,以便上下客或装载货物.铁路 支路有一定长度:火车也有一定的长度,且每列火车的长度相等. 假设某东西向的铁路上,有一小站.该站只有一条铁路支路可 ...

随机推荐

  1. 团队作业4——第一次项目冲刺(Alpha版本)11.16

    a. 提供当天站立式会议照片一张 举行站立式会议,讨论项目安排: 整理各自的任务汇报: 全分享遇到的困难一起讨论: 讨论接下来的计划: b. 每个人的工作 (有work item 的ID) 1.前两天 ...

  2. python 操作PostgreSQL

    pip install psycopg Python psycopg2 模块APIs 以下是psycopg2的重要的的模块例程可以满足Python程序与PostgreSQL数据库的工作. S.N. A ...

  3. Scrum 冲刺 第六日

    Scrum 冲刺 第六日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...

  4. node框架express

    见识到原生nodeJs服务器的恶心后,我们来用下简单好用的框架吧~ 服务器无非主要提供接口和静态文件读取,直接上代码: const express = require('express'); cons ...

  5. 20165230 2017-2018-2 《Java程序设计》第4周学习总结

    20165230 2017-2018-2 <Java程序设计>第4周学习总结 教材学习内容总结 子类与继承 通过class 子类名 extends 父类名定义子类.子类只能继承一个父类,关 ...

  6. Spring Security 入门(1-4-2)Spring Security - 认证过程之AuthenticationProvider的扩展补充说明

    1.用户信息从数据库获取 通常我们的用户信息都不会向第一节示例中那样简单的写在配置文件中,而是从其它存储位置获取,比如数据库.根据之前的介绍我们知道用户信息是通过 UserDetailsService ...

  7. MySql入门(2-2)创建数据库

    mysql -u root -p; show databases; create database apigateway; use apigateway; show tables;

  8. C#程序编写规范

    代码书写规则 1.尽量使用接口,然后使用类实现接口,提高程序的灵活性. 2.一行不要超过80个字符. 3.尽量不要手工更改计算机生成的代码,若必须要改,一定要改为和计算机生成的代码风格一样. 4.关键 ...

  9. 【WebGL入门】画一个旋转的cube

    最近搜罗了各种资料,发现WebGL中文网特别好用,很适合新手入门:http://www.hewebgl.com/article/getarticle/50 只需要下载好需要的所有包,然后用notepa ...

  10. Java练习(模拟扫雷游戏)

    要为扫雷游戏布置地雷,扫雷游戏的扫雷面板可以用二维int数组表示.如某位置为地雷,则该位置用数字-1表示, 如该位置不是地雷,则暂时用数字0表示. 编写程序完成在该二维数组中随机布雷的操作,程序读入3 ...