【BZOJ1835】【ZJOI2010】基站选址
Description
有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。 输入数据 (base.in) 输入文件的第一行包含两个整数N,K,含义如上所述。 第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。 第三行包含N个整数,表示C1,C2,…CN。 第四行包含N个整数,表示S1,S2,…,SN。 第五行包含N个整数,表示W1,W2,…,WN。
Input
输入文件的第一行包含两个整数N,K,含义如上所述。
第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。
第三行包含N个整数,表示C1,C2,…CN。
第四行包含N个整数,表示S1,S2,…,SN。
第五行包含N个整数,表示W1,W2,…,WN。
Output
输出文件中仅包含一个整数,表示最小的总费用。
Sample Input
3 2
1 2
2 3 2
1 1 0
10 20 30
Sample Output
4
Hint
40%的数据中,\(N \leq 500\);
100%的数据中,\(K \leq N,K \leq 100 , N \leq 20000 , Di \leq 10^{9} , Ci \leq 10000,Si \leq 10^9,Wi \leq 10000\) 。
Solution
对于 40%的数据,显然,这是一个简单的 dp,定义 \(f_{i,j}\) 表示将第 i 个星球选为第 j 个基站且不考虑之后的星球的费用,显然可以很容易的得到 dp 方程:$f_{i,j} = min(f_{k,j-1} + cost(k,i))+c_{i} $ ;
上文中 $ Cost(i,j) = \Sigma_{k} w_{k} ( d_{i} < d_{k} - s_{k} \wedge d_{k} > d_{j} + s_{k} ) $ 表示 i~j 之间没有被覆盖到的星球的花费之和。暴力计算 cost 函数的时间复杂度为 O(n),故总时间复杂度为\(O(kn^2)\) .
对于 100%的数据,考虑进行优化,首先发现,第 j 层的状态只与上一层有关,故考虑压内存,j接下来,我们发现,大量的时间花费计算在 cost 函数上,容易发现,对于一个星球 i,它可以被覆盖的范围一定是一个区间,考虑记录这个区间的左右端点,接下来考虑它没被覆盖的贡献,容易发现,当你选择区间右端点(不含)之后作为即将建立的基站时,若是从左端点(不含)之前的星球所转移过来的,就需要花费该星球的未覆盖费,由于这是一个区间问题,而状态的转移\(min(f_{j} + cost(j,i))\)也同样是区间内的,因此考虑利用线段树维护\(min(f_{j} + cost(j,i))\)加速 DP,滚动利用线段树,在推导完第 i 个星球之后,将右端点为 i 的星球的\(w_{j}\)在线段树上累加到该星球左端点(不含)之前的星球即可,这样处理好细节之后就可以通过此题,时间复杂度为\(O(kn \log_{2} n)\),空间复杂度为O(n).
Code
#include <stdio.h>
#define R register
#define mid (l+r>>1)
#define MN 20005
#define MM (1<<16)
#define inf 0x3f3f3f3f
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
int d[MN],T[MM],mark[MM],r[MN],c[MN],w[MN],st[MN],ed[MN],n,k,lk[MN],nxt[MN],head[MN],cnt,f[MN],ans=inf;
inline int min(int a,int b) {return a<b?a:b;}
inline void ins(int x,int y){lk[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;}
inline int find(int x){
R int l=1,r=n;
while(l<r)
if (d[mid]<x) l=mid+1;
else r=mid;
return l;
}
inline void build(int k,int l,int r){
if (l==r){
T[k]=f[l];
return;
}build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
T[k]=min(T[k<<1],T[k<<1|1]);mark[k]=0;
}
inline void pushdown(int k){
if (!mark[k]) return;
T[k<<1]+=mark[k],T[k<<1|1]+=mark[k];
mark[k<<1]+=mark[k],mark[k<<1|1]+=mark[k];
mark[k]=0;
}
inline void update(int l,int r,int a,int b,int k,int ad){
if (l>=a&&r<=b){
T[k]+=ad;
mark[k]+=ad;
return;
}pushdown(k);
if (a<=mid) update(l,mid,a,b,k<<1,ad);
if (b>mid) update(mid+1,r,a,b,k<<1|1,ad);
T[k]=min(T[k<<1],T[k<<1|1]);
}
inline int query(int l,int r,int a,int b,int k){
if (l==a&&r==b) return T[k];pushdown(k);
if (b<=mid) return query(l,mid,a,b,k<<1);
if (a>mid) return query(mid+1,r,a,b,k<<1|1);
return min(query(l,mid,a,mid,k<<1),query(mid+1,r,mid+1,b,k<<1|1));
}
int main(){
n=read(),k=read();
for (R int i=2; i<=n; ++i) d[i]=read();
for (R int i=1; i<=n; ++i) c[i]=read();
for (R int i=1; i<=n; ++i) r[i]=read();
for (R int i=1; i<=n; ++i) w[i]=read();
d[++n]=inf;++k;
for (R int i=1; i<=n; ++i){
st[i]=find(d[i]-r[i]),ed[i]=find(d[i]+r[i]);
if (d[ed[i]]>r[i]+d[i]) --ed[i];
ins(ed[i],i);
}
for (R int i=1,sum=0; i<=n; ++i){
f[i]=sum+c[i];
for (R int j=head[i]; j; j=nxt[j])
sum+=w[lk[j]];
}
for (R int i=2; i<=k; ++i){
build(1,1,n);
for (R int j=1; j<=n; ++j){
if (j>=i)
f[j]=query(1,n,1,j-1,1)+c[j];
else f[j]=inf;
for (R int l=head[j]; l; l=nxt[l])
if (st[lk[l]]>1)
update(1,n,1,st[lk[l]]-1,1,w[lk[l]]);
}
}
printf("%d\n",f[n]);
return 0;
}
【BZOJ1835】【ZJOI2010】基站选址的更多相关文章
- BZOJ1835 [ZJOI2010] 基站选址 【动态规划】【线段树】
题目分析: 首先想一个DP方程,令f[m][n]表示当前在前n个村庄选了m个基站,且第m个基站放在n处的最小值,转移可以枚举上一个放基站的村庄,然后计算两个村庄之间的代价. 仔细思考两个基站之间村庄的 ...
- bzoj1835[ZJOI2010]基站选址
主席树+决策单调,重写一遍比之前短多了……题解:http://www.cnblogs.com/liu-runda/p/6051422.html #include<cstdio> #incl ...
- 【题解】Luogu P2605 [ZJOI2010]基站选址
原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...
- 【BZOJ1835】基站选址(线段树)
[BZOJ1835]基站选址(线段树) 题面 BZOJ 题解 考虑一个比较暴力的\(dp\) 设\(f[i][j]\)表示建了\(i\)个基站,最后一个的位置是\(j\)的最小代价 考虑如何转移\(f ...
- 【LG2605】[ZJOI2010]基站选址
[LG2605][ZJOI2010]基站选址 题面 洛谷 题解 先考虑一下暴力怎么写,设\(f_{i,j}\)表示当前\(dp\)到\(i\),且强制选\(i\),目前共放置\(j\)个的方案数. 那 ...
- 题解 [ZJOI2010]基站选址
题解 [ZJOI2010]基站选址 题面 解析 首先考虑一个暴力的DP, 设\(f[i][k]\)表示第\(k\)个基站设在第\(i\)个村庄,且不考虑后面的村庄的最小费用. 那么有\(f[i][k] ...
- luogu P2605 [ZJOI2010]基站选址 线段树优化dp
LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cd ...
- [ZJOI2010]基站选址,线段树优化DP
G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离 ...
- BZOJ1835,LG2605 [ZJOI2010]基站选址
题意 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为\(D_i\) 需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为\(C_i\) 如果在距离第i个村 ...
- Bzoj1835:[ZJOI2010]基站选址
Sol 设\(f[i][j]\)表示钦定\(i\)建基站,建了\(j\)个基站的最小代价 \(f[i][j]=max(f[l][j-1]+\Sigma_{t=l+1}^{i-1}\)不能影响到的村庄的 ...
随机推荐
- C语言博客作业字符数组
一.PTA实验作业 7-12 IP地址转换 本题PTA提交列表 设计思路 3.代码截图 7-7删除字符串中的子串 本题PTA提交列表 设计思路 定义字符型数组s[81]储存主串,sub[81]储存子串 ...
- 解决flask的端口占用
问题:socket.error: [Errno 48] Address already in use 在编辑flask代码时,如果没有关闭flask的程序,默认的5000端口一直被占用. 再次运行fl ...
- Python 线程复习
修改全局变量,设立flag来避免线程间数据冲突,低效率版 from threading import Thread import time g_num=0 g_flag = 1 def test1() ...
- io多路复用(一)
sever端 1 import socket sk1 = socket.socket() sk1.bind(('127.0.0.1',8001,)) sk1.listen() sk2 = socket ...
- hexo博客图片问题
hexo博客图片问题 第一步 首先确认_config.yml 中有 post_asset_folder:true. Hexo 提供了一种更方便管理 Asset 的设定:post_asset_folde ...
- 微信qq,新浪等第三方授权登录的理解
偶们常说的第三方是指的微信,qq,新浪这些第三方,因为现在基本每个人都有qq或者微信,那么我们就可以通过这些第三方进行登录.而这些网站比如慕课网是通过第三方获取用户的基本信息 它会有个勾选按钮,提示是 ...
- ESP8266 wifi 模块配置,Wechat+APP控制实现
首先刷入安信可的AiCloud 2.0 SDK文件,AiCloud 2.0具体信息参见AiCloud 1.0 和AiCloud 2.0对比 APP见如下二维码下载. 1.安信可AiCloud 2.0 ...
- ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区
(一)问题 今天在使用Pl/sql developer查看表空间大小的时候,报错误:ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区,具体如下图: SQL> s ...
- PAT1048. Find Coins(01背包问题动态规划解法)
问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. ...
- android 运行时异常捕获
1,将运行时异常捕获并存到手机SD卡上 可以直接使用logcat 命令Runtime.getRuntime().exec("logcat -f "+ file.getAbsolut ...