使用场景

大数据量、低并发、高可用、订阅消费场景

概念理解

分区个数与消费者个数

分区个数 = 消费者个数 :最合适状态

分区个数 > 消费者个数 :某些消费者要承担更多的分区数据消费

分区个数 < 消费者个数  :浪费资源

当“某些消费者要承担更多的分区数据消费”,消费者接收的数据不能保证全局有序性,但能保证同一分区的数据是有序的

groupId作用

采用同一groupId,分区个数 >= 消费者个数,每个消费者都会消费数据

采用同一groupId,分区个数<消费者个数,某些消费者不会接收数据

采用不同groupId,各个groupId的消费者相互不受影响

命令行使用

启动:.\bin\windows\kafka-server-start.bat .\config\server.properties
创建topic:.\bin\windows\kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic lilei
开启生产者:kafka-console-producer.bat --broker-list localhost:9092 --topic lilei
开启消费者:kafka-console-consumer.bat --zookeeper localhost:2181 --topic lilei

java api使用

api 包

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>1.0.0</version>
</dependency>

生产者

package com.lilei.kafka.liei_kafka;

import java.util.Properties;  

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class KafkaProducer {
private final Producer<String, String> producer;
public final static String TOPIC = "topic3"; private KafkaProducer() {
Properties props = new Properties();
// 此处配置的是kafka的端口
props.put("metadata.broker.list", "127.0.0.1:9092");
props.put("zk.connect", "127.0.0.1:2181"); // 配置value的序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
// 配置key的序列化类
props.put("key.serializer.class", "kafka.serializer.StringEncoder"); props.put("request.required.acks", "-1"); producer = new Producer<String, String>(new ProducerConfig(props));
} void produce() {
int messageNo = 0;
final int COUNT = Integer.MAX_VALUE; while (messageNo < COUNT) {
String key = String.valueOf(messageNo);
try {
Thread.sleep(300);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
String data = "hello kafka message " + key;
producer.send(new KeyedMessage<String, String>(TOPIC, key, data));
System.out.println(data);
messageNo++;
}
} public static void main(String[] args) {
new KafkaProducer().produce();
}
}

消费者

package com.lilei.kafka.liei_kafka;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties; public class KafkaConsumer { private final ConsumerConnector consumer; private KafkaConsumer() {
Properties props = new Properties();
// zookeeper 配置
props.put("zookeeper.connect", "localhost:2181"); // group 代表一个消费组
props.put("group.id", "vvvxyzv"); // zk连接超时
props.put("zookeeper.session.timeout.ms", "5000");
props.put("zookeeper.sync.time.ms", "10000");
props.put("rebalance.max.retries", "10");
props.put("rebalance.backoff.ms", "2000"); props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest");
// 序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder"); ConsumerConfig config = new ConsumerConfig(props); consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
} void consume() {
String topic = "topic3"; Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(1)); StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties()); Map<String, List<KafkaStream<String, String>>> consumerMap = consumer.createMessageStreams(topicCountMap, keyDecoder, valueDecoder);
KafkaStream<String, String> stream = consumerMap.get(topic).get(0);
ConsumerIterator<String, String> it = stream.iterator();
while (it.hasNext())
{
MessageAndMetadata<String,String> mam = it.next(); System.out.println(mam.key()+"---"+mam.message());
}
// System.out.println("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" + it.next().message() + "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
} public static void main(String[] args) {
new KafkaConsumer().consume();
}
}

注意点

使用的kafka api版本要注意,在不合适或者存在bug的状态下,会报: kafka.common.ConsumerRebalanceFailedException

监控

java -cp KafkaOffsetMonitor-assembly-0.2.0.jar com.quantifind.kafka.offsetapp.OffsetGetterWeb --zk localhost:2181 --port 8086 --refresh 10.seconds --retain 2.days

kafka概念使用简介注意点的更多相关文章

  1. Kafka 概念、单机搭建与使用

    目录 Kafka 概念.单机搭建与使用 基本概念介绍 Topic Producer Consumer Kafka单机配置,一个Broker 环境: 配置zookeeper 配置Kafka 使用Kafk ...

  2. Kafka 探险 - 架构简介

    Kafka 探险 - 架构简介 这个 Kafka 的专题,我会从系统整体架构,设计到代码落地.和大家一起杠源码,学技巧,涨知识.希望大家持续关注一起见证成长! 我相信:技术的道路,十年如一日!十年磨一 ...

  3. 【转】kafka概念入门[一]

    转载的,原文:http://www.cnblogs.com/intsmaze/p/6386616.html ---------------------------------------------- ...

  4. [转帖]kafka入门:简介、使用场景、设计原理、主要配置及集群搭建

    kafka入门:简介.使用场景.设计原理.主要配置及集群搭建 http://www.aboutyun.com/thread-9341-1-1.html 还没看完 感觉挺好的. 问题导读: 1.zook ...

  5. Kafka官方文档翻译——简介

    简介 Kafka擅长于做什么? 它被用于两大类应用: 在应用间构建实时的数据流通道 构建传输或处理数据流的实时流式应用 几个概念: Kafka以集群模式运行在1或多台服务器上 Kafka以topics ...

  6. Kafka:架构简介【转】

    转:http://www.cnblogs.com/f1194361820/p/6026313.html Kafka 架构简介 Kafka是一个开源的.分布式的.可分区的.可复制的基于日志提交的发布订阅 ...

  7. kafka入门:简介、使用场景、设计原理、主要配置及集群搭建(转)

    问题导读: 1.zookeeper在kafka的作用是什么? 2.kafka中几乎不允许对消息进行"随机读写"的原因是什么? 3.kafka集群consumer和producer状 ...

  8. kafka概念

    一.结构与概念解释 1.基础概念 topics: kafka通过topics维护各类信息. producer:发布消息到Kafka topic的进程. consumer:订阅kafka topic进程 ...

  9. 漫游Kafka介绍章节简介

    原文地址:http://blog.csdn.net/honglei915/article/details/37564521 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息 ...

随机推荐

  1. Docker容器技术

    Docker介绍 什么是容器 Linux容器是与系统其他部分隔离开的一系列进程,从另一个系统镜像运行,并由该镜像提供支持进程所需的全部文件. 容器镜像包含了应用的所有依赖项,因而在从开发到测试再到生产 ...

  2. PAT1117. Eddington Number

    思路:搞懂题意是关键–E满足有共有E天骑车的距离超过E米,求最大的E! 将数组排序,我们假设最大的E是e,e满足条件有e天骑车超过e米,并且e+1不满足有e+1天骑车超过e+1米.那么我们可以逆序统计 ...

  3. 在SpringBoot使用Druid进行数据监控

    前言 之前在构建项目初始设计的时候在选择数据库连接的时候就看到Druid有这样的强大的功能.数据监控.对于一个项目来说,数据监控特别重要,之前使用对于数据库的监控都是通过mysql的日志等系统来完成的 ...

  4. mysql 导出每张表中的100条数据..............

    windows下配好MYSQL 环境变量,cmd 然后: mysqldump -uroot -p123 [数据库名]--where "1=1 limit 100" --lock-a ...

  5. postman模拟HttpPost请求的方法

    开始想装postman的Google浏览器插件的,但是发现应用商店无法搜索,下载的拖进扩展也装不上... 于是找到了这个绿色版的Postman桌面程序!有需要的可以下载,点击下载:http://dow ...

  6. Git创建本地分支并推送到远程github仓库

  7. 解决ios不支持按钮:active伪类的方法

    mozilla开发社区上有 :active 不起作用的答案: [1] By default, Safari Mobile does not use the :active state unless t ...

  8. find命令 参数

    记一下我遇到过的: 中 !表示否定 -a 表示并且 -o  或者   perm注意权限模式,有无 -,单表含义不同,有-是表示属主.组.其他组权限对应(即某位为0时,表示不指定要匹配的权限,而不是没有 ...

  9. R语言︱文本挖掘套餐包之——XML+SnowballC+tm包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言︱文本挖掘套餐包之--XML+tm+Sn ...

  10. Rwordseg使用

    #用于下载安装rJava 和 Rwordseg,如果安装了就注释掉 install.packages("rJava") install.packages("Rwordse ...