一、前述

solve主要是定义求解过程,超参数的

二、具体

#往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。
#caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。
Stochastic Gradient Descent (type: "SGD"),
AdaDelta (type: "AdaDelta"),
Adaptive Gradient (type: "AdaGrad"),
Adam (type: "Adam"),
Nesterov’s Accelerated Gradient (type: "Nesterov") and
RMSprop (type: "RMSProp") net: "examples/mnist/lenet_train_test.prototxt" #网络配置文件位置
test_iter: 100
test_interval: 500
base_lr: 0.01#基础学习率
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU net: "examples/mnist/lenet_train_test.prototxt" #网络位置
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt" #也可以分别设定train和test
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt" test_iter: 100 #迭代了多少个测试样本呢? batch*test_iter 假设有5000个测试样本,一次测试想跑遍这5000个则需要设置test_iter×batch=5000 test_interval: 500 #测试间隔。也就是每训练500次,才进行一次测试。 base_lr: 0.01 #base_lr用于设置基础学习率 lr_policy: "inv" #学习率调整的策略 希望学习率越来越小 - fixed:   保持base_lr不变.
- step:    如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- exp:   返回base_lr * gamma ^ iter, iter为当前迭代次数
- inv:   如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据 stepvalue值变化
- poly:    学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) momentum :0.9 #动量 一般是固定为0.9 display: 100 #每训练100次,在屏幕上显示一次。如果设置为0,则不显示。 max_iter: 20000 #最大迭代次数,2W次就停止了 snapshot: 5000 #快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存
snapshot_prefix: "examples/mnist/lenet" solver_mode: CPU #设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

【Caffe篇】--Caffe solver层从初始到应用的更多相关文章

  1. Caffe源代码中Solver文件分析

    Caffe源代码(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的头文件,这里介绍下include/caffe/solver.hpp文件 ...

  2. caffe实现自己的层

    http://blog.csdn.net/xizero00/article/details/52529341 将这篇博客所讲进行了实现 1.LayerParameter也在caffe.proto文件中 ...

  3. 【撸码caffe四】 solver.cpp&&sgd_solver.cpp

    caffe中solver的作用就是交替低啊用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. solver.cpp中的Solver ...

  4. 【撸码caffe 五】数据层搭建

    caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver: // Train / Finetune a model. int train() { -- shared_ ...

  5. Caffe源码-Solver类

    Solver类简介 Net类中实现了网络的前向/反向计算和参数更新,而Solver类中则是对此进行进一步封装,包含可用于逐次训练网络的Step()函数,和用于求解网络的优化解的Solve()函数,同时 ...

  6. caffe win添加新层

    1.编写.h和.cpp .cu文件 将.hpp文件放到路径caffe-windows\caffe-master\include\caffe\layers下 将.cpp文件和.cu放到路径caffe-w ...

  7. caffe添加python数据层

    caffe添加python数据层(ImageData) 在caffe中添加自定义层时,必须要实现这四个函数,在C++中是(LayerSetUp,Reshape,Forward_cpu,Backward ...

  8. caffe实现focal loss层的一些理解和对实现一个layer层易犯错的地方的总结

    首先要在caffe.proto中的LayerParameter中增加一行optional FocalLossParameter focal_loss_param = 205;,然后再单独在caffe. ...

  9. caffe.bin caffe的框架

    最近打算看一看caffe实现的源码,因为发现好多工作都是基于改动网络来实现自己的的目的.比如变更目标函数以及网络结构,以实现图片风格转化或者达到更好的效果. 深度学习框架 https://mp.wei ...

随机推荐

  1. PHP Simple HTML DOM解析器使用入门

    http://www.cnphp.info/php-simple-html-dom-parser-intro.html 一直以来使用php解析html文档树都是一个难题.Simple HTML DOM ...

  2. BootStrapTable获取选中数据值并传参至父页面

    如何实现以下效果呢? 首先,我们先要了解一下BootStrapTable如何获取选中数据的具体值. 如下图所示,怎样选择任意一行,获取其中的数据 一.首先想要选择任意一行,就得必须先有选择框,选择框是 ...

  3. Go 语言之三驾马车

    interface Go是一门面向接口编程的语言,interface的设计自然是重中之重.Go中对于interface设计的巧妙之处就在于空的interface可以被当作"Duck" ...

  4. asp.net core session丢失问题排查

    最近公司采用asp.net core的站点在外测环境中,总是发现存在session丢失的情况.排查了好久,客户端.AspNetCore.Session的cookie未丢失,session的分布式缓存采 ...

  5. bzoj3811 玛里苟斯

    分三种情况讨论 k=1时,对于每一位而言,只要有一个数这一位是1,那么这个就有0.5的概率是1,选他就是1,不选就是0,有第二个的话,在第一个选或不选的前提下,也各有0.5的几率选或不选,0和1的概率 ...

  6. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  7. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  8. 【爆料】-《亚伯大学毕业证书》Aber一模一样原件

    ☞亚伯大学毕业证书[微/Q:865121257◆WeChat:CC6669834]UC毕业证书/联系人Alice[查看点击百度快照查看][留信网学历认证&博士&硕士&海归&am ...

  9. Git----GitHub上传本地文件到git

    1.首先在git上创建一个库,用来保存上传的本地文件 2.通过命令 git init 把这个目录变成git可以管理的仓库 git init 3.将远程git库克隆一份保存到本地 git clone x ...

  10. Exp6 信息搜集与漏洞扫描 20164312 马孝涛

    1.实践内容 (1)各种搜索技巧的应用  (2)DNS IP注册信息的查询  (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点(以自己主机为目标)  (4)漏洞扫描:会扫, ...