Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:

"bbbab"

Output:

4

One possible longest palindromic subsequence is "bbbb".

Example 2:
Input:

"cbbd"

Output:

2

One possible longest palindromic subsequence is "bb".

这道题给了我们一个字符串,让我们求最大的回文子序列,子序列和子字符串不同,不需要连续。而关于回文串的题之前也做了不少,处理方法上就是老老实实的两两比较吧。像这种有关极值的问题,最应该优先考虑的就是贪婪算法和动态规划,这道题显然使用DP更加合适。我们建立一个二维的DP数组,其中dp[i][j]表示[i,j]区间内的字符串的最长回文子序列,那么对于递推公式我们分析一下,如果s[i]==s[j],那么i和j就可以增加2个回文串的长度,我们知道中间dp[i + 1][j - 1]的值,那么其加上2就是dp[i][j]的值。如果s[i] != s[j],那么我们可以去掉i或j其中的一个字符,然后比较两种情况下所剩的字符串谁dp值大,就赋给dp[i][j],那么递推公式如下:

/  dp[i + 1][j - 1] + 2                       if (s[i] == s[j])

dp[i][j] =

\  max(dp[i + 1][j], dp[i][j - 1])        if (s[i] != s[j])

解法一:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n));
for (int i = n - ; i >= ; --i) {
dp[i][i] = ;
for (int j = i + ; j < n; ++j) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + ][j - ] + ;
} else {
dp[i][j] = max(dp[i + ][j], dp[i][j - ]);
}
}
}
return dp[][n - ];
}
};

我们可以对空间进行优化,只用一个一维的dp数组,参见代码如下:

解法二:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size(), res = ;
vector<int> dp(n, );
for (int i = n - ; i >= ; --i) {
int len = ;
for (int j = i + ; j < n; ++j) {
int t = dp[j];
if (s[i] == s[j]) {
dp[j] = len + ;
}
len = max(len, t);
}
}
for (int num : dp) res = max(res, num);
return res;
}
};

下面是递归形式的解法,memo数组这里起到了一个缓存已经计算过了的结果,这样能提高运算效率,使其不会TLE,参见代码如下:

解法三:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> memo(n, vector<int>(n, -));
return helper(s, , n - , memo);
}
int helper(string& s, int i, int j, vector<vector<int>>& memo) {
if (memo[i][j] != -) return memo[i][j];
if (i > j) return ;
if (i == j) return ;
if (s[i] == s[j]) {
memo[i][j] = helper(s, i + , j - , memo) + ;
} else {
memo[i][j] = max(helper(s, i + , j, memo), helper(s, i, j - , memo));
}
return memo[i][j];
}
};

类似题目:

Palindromic Substrings

Longest Palindromic Substring

参考资料:

https://discuss.leetcode.com/topic/78603/straight-forward-java-dp-solution

https://discuss.leetcode.com/topic/78799/c-beats-100-dp-solution-o-n-2-time-o-n-space

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Longest Palindromic Subsequence 最长回文子序列的更多相关文章

  1. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  2. 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...

  3. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  4. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  5. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  6. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  7. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  8. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  9. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

随机推荐

  1. (译文)掌握JavaScript基础--理解this关键字的新思路

    普通函数 下面这种就是普通函数 function add(x, y) { return x + y; } 每个普通函数被调用的时候,都相当于有一个this参数传进来. 内部函数this不会是外部函数传 ...

  2. Hibernate学习(4)- Hibernate对象的生命周期

    1.Hibernate对象的生命周期(瞬时状态.持久化状态.游离状态) 1.瞬时状态(Transient): 使用new操作符初始化的对象就是瞬时状态,没有跟任何数据库数据相关联:2.持久化状态(Pa ...

  3. Property 'id' not found on type java.lang.String

    改为 忘写了$符,取不出来,因此报错!

  4. IntelliJIDEA中如何使用JavaDoc

    IntelliJ IDEA 12.1.6,本身提供了很好的 JavaDoc 生成功能,以及标准 JavaDoc 注释转换功能,其实质是在代码编写过程中,按照标准 JavaDoc 的注释要求,为需要暴露 ...

  5. 第四十六条:for-each循环优先于传统的for循环

    for(Elements e : list) { //doSomeThing-- }

  6. XML之自动生成类,添加,修改,删除类的属性

    1. class ClassHelperDemo { public static void Main() { #region 演示一:动态生成类. //生成一个类t. Type t = ClassHe ...

  7. TFTP通信原理

    TFTP的通信流程 TFTP共定义了五种类型的包格式,格式的区分由包数据前两个字节的Opcode字段区分,分别是: · l 读文件请求包:Read request,简写为RRQ,对应Opcode字段值 ...

  8. python小练习之三---购物车程序

    购物车购物的例子 严格来讲,这个例子相对大一些 功能也稍完备一些,具有用户登录,商品上架,用户购物,放入购物车,展示每个用户的购物车里的商品的数量,用户账户余额,支持用户账户充值等 下面展示的代码有些 ...

  9. linux作为服务器,利用top命令查看服务进程的耗用情况

    top命令查看进程服务如下: 其中shift+m可以按照内存的消耗进行排序,shift+p是按照cpu的消耗进程,排序,其中对cpu的消耗是一定时间,谁占用的时间越长消耗越大, 还有按空格键,会刷新一 ...

  10. phalcon框架命名空间

    命名空间第一影像就是实际上就相当宏定义,就是需要把一个很长的带有路径的类文件指定一个空间,然后就可直接用简单简写模式 当然如果是外部文件需要首先引入外部文件,如果不引入外部文件还是会报错.一般最会出错 ...