Description

小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池。

这 n 个城池用 1 到 n 的整数表示。除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,
其中 fi <i。也就是说,所有城池构成了一棵有根树。这 m 个骑士用 1 到 m 的整数表示,其
中第 i 个骑士的初始战斗力为 si,第一个攻击的城池为 ci。
每个城池有一个防御值 hi,如果一个骑士的战斗力大于等于城池的生命值,那么骑士就可
以占领这座城池;否则占领失败,骑士将在这座城池牺牲。占领一个城池以后,骑士的战斗力
将发生变化,然后继续攻击管辖这座城池的城池,直到占领 1 号城池,或牺牲为止。
除 1 号城池外,每个城池 i 会给出一个战斗力变化参数 ai;vi。若 ai =0,攻占城池 i 以后骑士战斗力会增加 vi;若 ai =1,攻占城池 i 以后,战斗力会乘以 vi。注意每个骑士是单独计算的。也就是说一个骑士攻击一座城池,不管结果如何,均不会影响其他骑士攻击这座城池的结果。
现在的问题是,对于每个城池,输出有多少个骑士在这里牺牲;对于每个骑士,输出他攻占的城池数量。

Input

第 1 行包含两个正整数 n;m,表示城池的数量和骑士的数量。

第 2 行包含 n 个整数,其中第 i 个数为 hi,表示城池 i 的防御值。
第 3 到 n +1 行,每行包含三个整数。其中第 i +1 行的三个数为 fi;ai;vi,分别表示管辖
这座城池的城池编号和两个战斗力变化参数。
第 n +2 到 n + m +1 行,每行包含两个整数。其中第 n + i 行的两个数为 si;ci,分别表
示初始战斗力和第一个攻击的城池。

Output

输出 n + m 行,每行包含一个非负整数。其中前 n 行分别表示在城池 1 到 n 牺牲的骑士

数量,后 m 行分别表示骑士 1 到 m 攻占的城池数量。

Sample Input

5 5
50 20 10 10 30
1 1 2
2 0 5
2 0 -10
1 0 10
20 2
10 3
40 4
20 4
35 5

Sample Output

2
2
0
0
0
1
1
3
1
1

HINT

对于 100% 的数据,1 <= n;m <= 300000;
1 <= fi<i; 1 <= ci <= n; -10^18 <= hi,vi,si <=
10^18;ai等于1或者2;当 ai =1 时,vi > 0;保证任何时候骑士战斗力值的绝对值不超过 10^18。

题解

考虑可并堆。

先将所有 “骑士” 放在 第一个攻占的 “城池” 上。

将不合法的剔除(即战斗力小于防御力的 “骑士”),统计答案。

牺牲的骑士数量直接等于 $pop$ 掉的骑士人数,而骑士攻占的城池数等于起始城池与当前城池间的深度差。

现在考虑修改:可以打上标记, $pushdown$ 时先转移乘法标记,再转移加法标记。转移只需要转移 $merge$ 操作经过的节点。

值得注意的是,在 $pop$ 堆顶元素时需先将堆顶的标记下移。

 //It is made by Awson on 2018.1.4
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ; struct mergable_tree {
int ch[N+][], dist[N+], root[N+];
LL prod[N+], sum[N+], key[N+];
mergable_tree() {
for (int i = ; i <= N; i++) prod[i] = ;
}
void pushdown(int o) {
#define ls ch[o][0]
#define rs ch[o][1]
if (prod[o] != ) {
key[ls] *= prod[o], key[rs] *= prod[o]; sum[ls] *= prod[o], sum[rs] *= prod[o]; prod[ls] *= prod[o], prod[rs] *= prod[o];
prod[o] = ;
}
if (sum[o] != ) {
key[ls] += sum[o], key[rs] += sum[o]; sum[ls] += sum[o], sum[rs] += sum[o];
sum[o] = ;
}
#undef ls
#undef rs
}
int merge(int a, int b) {
if (!a || !b) return a+b;
pushdown(a), pushdown(b);
if (key[a] > key[b]) swap(a, b);
ch[a][] = merge(ch[a][], b);
if (dist[ch[a][]] < dist[ch[a][]]) swap(ch[a][], ch[a][]);
dist[a] = dist[ch[a][]]+;
return a;
}
}T;
int n, m, f, a[N+], c[N+];
LL h[N+], v[N+], s;
struct tt {
int to, next;
}edge[N+];
int path[N+], top;
int sum[N+], ans[N+], dep[N+]; void add(int u, int v) {
edge[++top].to = v;
edge[top].next = path[u];
path[u] = top;
}
void dfs(int u, int depth) {
dep[u] = depth;
for (int i = path[u]; i; i = edge[i].next) {
dfs(edge[i].to, depth+); T.root[u] = T.merge(T.root[u], T.root[edge[i].to]);
}
while (T.key[T.root[u]] < h[u] && T.root[u] != ) {
++sum[u];
ans[T.root[u]] = dep[c[T.root[u]]]-depth;
T.pushdown(T.root[u]);
T.root[u] = T.merge(T.ch[T.root[u]][], T.ch[T.root[u]][]);
}
if (a[u] == ) T.key[T.root[u]] += v[u], T.sum[T.root[u]] += v[u];
else T.key[T.root[u]] *= v[u], T.prod[T.root[u]] *= v[u], T.sum[T.root[u]] *= v[u];
}
void work() {
memset(ans, -, sizeof(ans));
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%lld", &h[i]);
for (int i = ; i <= n; i++) {
scanf("%d%d%lld", &f, &a[i], &v[i]);
add(f, i);
}
for (int i = ; i <= m; i++) {
scanf("%lld%d", &s, &c[i]);
T.key[i] = s;
T.root[c[i]] = T.merge(T.root[c[i]], i);
}
dfs(, );
for (int i = ; i <= n; i++) printf("%d\n", sum[i]);
for (int i = ; i <= m; i++) printf("%d\n", ans[i] == - ? dep[c[i]] : ans[i]);
}
int main() {
work();
return ;
}

[JLOI 2015]城池攻占的更多相关文章

  1. 【BZOJ】【4003】【JLOI2015】城池攻占

    可并堆 QAQ改了一下午……最终弃疗求助zyf……居然被秒了QAQ真是弱到不行(zyf太神了Orz) 还是先考虑部分分的做法: 1.$n,m\leq 3000$:可以暴力模拟每个骑士的攻打过程,也可以 ...

  2. BZOJ_4003_[JLOI2015]城池攻占_可并堆

    BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...

  3. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  4. 【BZOJ4003】[JLOI2015]城池攻占 可并堆

    [BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...

  5. [bzoj4003][JLOI2015]城池攻占_左偏树

    城池攻占 bzoj-4003 JLOI-2015 题目大意:一颗n个节点的有根数,m个有初始战斗力的骑士都站在节点上.每一个节点有一个standard,如果这个骑士的战斗力超过了这个门槛,他就会根据城 ...

  6. [洛谷P3261] [JLOI2015]城池攻占(左偏树)

    不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...

  7. BZOJ 4003 【JLOI2015】城池攻占

    Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, ...

  8. 【BZOJ4003】【JLOI2015】城池攻占(左偏树)

    题面 题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi ...

  9. [JLOI2015]城池攻占

    题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...

随机推荐

  1. Java基础学习笔记十一 Eclipse开发工具

    Eclipse是功能强大Java集成开发工具.它可以极大地提升我们的开发效率.可以自动编译,检查错误.在公司中,使用的就是Eclipse进行开发. Eclipse的下载.安装.卸载 下载 http:/ ...

  2. web服务器学习1---httpd-2.4.29源码手动编译安装

    环境准备: 系统:CentOS 7.4 软件:httpd-2.4.29 一  Apache主要特点 apache服务器在功能,性能和安全性等方面表现比较突出,可以较好地满足web服务器地应用需求.主要 ...

  3. splinter web测试框架

    1.安装谷歌浏览器驱动(windows把驱动解压放在Python.exe同级目录即可) http://chromedriver.storage.googleapis.com/index.html 注意 ...

  4. iOS 简易无限滚动的图片轮播器-SDCycleScrollView

    @interface ViewController () <</span>SDCycleScrollViewDelegate> @end @implementation Vie ...

  5. Gson序列化对象如何忽略字段

    Gson序列化对象如何忽略字段 Gson版本 2.8.2 梗概 用注解@Expose(serialize = false, deserialize = false)在类的成员上以告诉Gson 跳过本字 ...

  6. 利用封装、继承对Java代码进行优化

    注:本文实例分别可以在oldcastle(未优化的代码)和newcastle(优化后的代码)中查看,网址见文末 城堡游戏: 城堡中有多个房间,用户通过输入north, south, east, wes ...

  7. Web Api 使用模型验证

    public class Person { public int Id { get; set; } [Required(ErrorMessage = "姓名不能为空啊啊啊!")] ...

  8. JS刷题总结

    多总结,才能更好地进步,分享下最近的刷题总结给大家吧 关于缩减代码 1.善用js中的函数或者特性. (迭代.解构.set等等) //使用箭头函数缩减代码 //处理输入,可以用.map,需要注意其所有参 ...

  9. api-gateway实践(14)前端签名密钥和后端签名密钥

    1.前端签名密钥 1.1.缓存管理初始:engine初始的时候,从redis拉取全部前端绑定关系到engine缓存.新增/绑定:绑定签名密钥和服务实例,同时缓存该关系到redis,同时缓存到engin ...

  10. angular2 学习笔记 ( 状态管理 state management )

    更新 : 2017-12-29  ng5 移除 zone.js https://zhuanlan.zhihu.com/p/29577461 zone 的用途就是拦截游览器事件, 比如 click, a ...