http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780

Paint the Grid Again


Time Limit: 2 Seconds      Memory Limit: 65536 KB

Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or white).

Leo has a magical brush which can paint any row with black color, or any column with white color. Each time he uses the brush, the previous color of cells will be covered by the new color. Since the magic of the brush is limited, each row and each column can only be painted at most once. The cells were painted in some other color (neither black nor white) initially.

Please write a program to find out the way to paint the grid.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 500). Then N lines follow. Each line contains a string with N characters. Each character is either 'X' (black) or 'O' (white) indicates the color of the cells should be painted to, after Leo finished his painting.

Output

For each test case, output "No solution" if it is impossible to find a way to paint the grid.

Otherwise, output the solution with minimum number of painting operations. Each operation is either "R#" (paint in a row) or "C#" (paint in a column), "#" is the index (1-based) of the row/column. Use exactly one space to separate each operation.

Among all possible solutions, you should choose the lexicographically smallest one. A solution X is lexicographically smaller than Y if there exists an integer k, the first k - 1 operations of X and Y are the same. The k-th operation of X is smaller than the k-th in Y. The operation in a column is always smaller than the operation in a row. If two operations have the same type, the one with smaller index of row/column is the lexicographically smaller one.

Sample Input

2
2
XX
OX
2
XO
OX

Sample Output

R2 C1 R1
No solution

Author: YU, Xiaoyao
Source: The 11th Zhejiang Provincial Collegiate Programming Contest

分析;

给定n*n的矩阵

有2个操作:

1、把一行变成X

2、把一列变成O

限制:每行(每列)只能变一次

给定结果图,开始时图无O,X,问最小操作步数(且字典序最小)

思路:

对于(i,j)这个格子,若现在涂的是 O,则去掉O这排,(让这排都变成X即可)可以直接认为(i,j)是X

所以当某排的X攒满n个时,就可以去掉这排X

直接模拟即可

先把所有 全为O或全为X的 行和列预处理出来,放到一个栈里

因为字典序最小,所以先处理列再处理行,第i列 用i+n表示, 第i行用i表示
然后给栈排个序,这样就得到处理当前情况的顺序, 入个队列,然后一个个去掉就可以了。

AC代码:

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<set>
using namespace std;
#define N 1005
vector<int>ans;
char mp[N][N];
int n, h[N], l[N];
int yes[N];
int Stack[N], Top; void init(){
ans.clear();
memset(yes, , sizeof yes);
memset(h, , sizeof h);
memset(l, , sizeof l);
Top = ;
}
bool cmp(int a,int b){return a>b;}
//0-n-1 表示列 n-2n-1 表示行
void work(){
sort(Stack, Stack+Top, cmp);
queue<int>q;
int i, j;
for(int i = ; i < Top; i++){
q.push(Stack[i]), ans.push_back(Stack[i]); yes[Stack[i]]=-;
}
Top = ;
while(!q.empty()){
int u = q.front(); q.pop();
Top = ;
if(u<n)
for(j = ; j < n; j++)
{
mp[j][u] = 'X';
h[j]++;
if(yes[j+n]!=- && h[j]==n)Stack[Top++] = j+n;
}
else {
u-=n;
for(j = ; j < n; j++)
{
mp[u][j] = 'O';
l[j]++;
if(yes[j]!=- && l[j]==n)Stack[Top++] = j;
}
}
sort(Stack, Stack+Top, cmp);
for(i = ; i < Top; i++)q.push(Stack[i]), yes[Stack[i]] = -, ans.push_back(Stack[i]);
}
for(int i = ; i < *n; i++)if(yes[i]==){puts("No solution");return;}
for(int i = ans.size()-; i>=; i--){
int u = ans[i];
if(u>=n)printf("R"), u-=n;
else printf("C");
printf("%d",u+);
i ? printf(" ") : puts("");
}
}
int main(){
int T;scanf("%d",&T);
int i, j;
while(T--){
scanf("%d",&n);
init();
for(i=;i<n;i++)scanf("%s",mp[i]);
for(i=;i<n;i++)
{
for(j = ; j<n; j++)if(mp[i][j]=='X')h[i]++;
if(h[i]==n) Stack[Top++] = i+n;
else if(h[i]==) yes[i+n] = -;
}
for(i=;i<n;i++)
{
for(j = ; j<n; j++)if(mp[j][i]=='O')l[i]++;
if(l[i]==n) Stack[Top++] = i;
else if(l[i]==) yes[i] = -;
}
if(Top==){puts("No solution");continue;}
work();
}
return ;
}
/*
99
1
O
3
OOO
OOO
OOO 2
XX
OX
2
XO
OX */

 

zjuoj 3780 Paint the Grid Again的更多相关文章

  1. ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds      Me ...

  2. ZOJ 3780 Paint the Grid Again(隐式图拓扑排序)

    Paint the Grid Again Time Limit: 2 Seconds      Memory Limit: 65536 KB Leo has a grid with N × N cel ...

  3. zjuoj 3773 Paint the Grid

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3773 Paint the Grid Time Limit: 2 Secon ...

  4. ZOJ 3780 Paint the Grid Again

    拓扑排序.2014浙江省赛题. 先看行: 如果这行没有黑色,那么这个行操作肯定不操作. 如果这行全是黑色,那么看每一列,如果列上有白色,那么这一列连一条边到这一行,代表这一列画完才画那一行 如果不全是 ...

  5. Paint the Grid Again ZOJ - 3780 拓扑

    Paint the Grid Again Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu [ ...

  6. 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)

    Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...

  7. ZOJ 3781 Paint the Grid Reloaded(BFS)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Leo has a grid with N rows an ...

  8. Paint the Grid Reloaded ZOJ - 3781 图论变形

    Paint the Grid Reloaded Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %ll ...

  9. Paint the Grid Again (隐藏建图+优先队列+拓扑排序)

    Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...

随机推荐

  1. tomcat的debug模式启动不了

    这个问题可能是由于eclipse和tomcat的交互而产生的,在以debug模式启动tomcat时,发生了读取文件错误,eclipse自动设置了断点,导致tomcat不能正常启动.解决方法如下,打开b ...

  2. MSSQL 死锁查询

    SELECT SYS.DM_EXEC_REQUESTS.SESSION_ID,TEXT AS '执行SQL',CLIENT_NET_ADDRESS AS '请求IP',SYS.DM_EXEC_CONN ...

  3. MongoDB使用小结:一些常用操作分享

    本文整理了一年多以来我常用的MongoDB操作,涉及mongo-shell.pymongo,既有运维层面也有应用层面,内容有浅有深,这也就是我从零到熟练的历程. MongoDB的使用之前也分享过一篇, ...

  4. thinkPHP访问不同表前缀

    $Model=new Model(); $goods=$Model->Table('sdb_goods'); $param['brief']=array('like','%'.$p_title. ...

  5. Cookie案例:简单登录界面中的应用

    ServletDemo1.java package ztq.servlet.study; import java.io.IOException; import java.io.PrintWriter; ...

  6. 二、jquery选择器

    在jquery库中,可以通过选择器实现DOM元素快捷选择这一重要的核心功能. 1.选择器的优势 (1)代码更简单 由于在jquery库中,封装了大量可以通过选择器直接调用的方法或函数,使编写代码更加简 ...

  7. Andriod如何更改应用程序小图标

    1.之前我们安装的第一个应用图标是这样的(如下图) 2.在eclipse左侧项目中找到res文件下的drawable-hdpi         3.把自己找的LOGO图标拖到文件中,之后会弹出一个消息 ...

  8. Android中的适配方式

    1,图片适配(在不同像素密度的手机上,加载不同文件夹下的图片) 一套图(800*480,将截取的图片放置在hdpi下,小图(变形不明显), 大图(根据适配的手机,做单独的截取,比如有两款手机适配(做两 ...

  9. 【30集iCore3_ADP出厂源代码(ARM部分)讲解视频】30-3 底层驱动之LED_蜂鸣器

    视频简介: 该视频介绍iCore3应用开发平台出厂源代码中GPIO的配置方法 及如何点亮LED和驱动蜂鸣器发声. 源视频包下载地址: http://pan.baidu.com/s/1nvpYMff   ...

  10. 优惠分摊算法 php版

    <?php /* * 优惠分摊,算法很多,这里是从shopnc挖出来,适合优惠条件过滤的算法,实质很简单,但是理解难度还是有一点 * * 一个订单的商品,如果不参与某种活动,需要分摊优惠,一般来 ...