[OpenCV] Samples 04: contours2
要先变为二值图像:cvThreshold
提取轮廓:cvFindContours
参数描述:
hiararchy:参数和轮廓个数相同。
每个轮廓contours[ i ] 对应4个hierarchy元素的索引编号,即:
- hierarchy[ i ][ 0 ] 后一个轮廓
- hierarchy[ i ][ 1 ] 前一个轮廓
- hierarchy[ i ][ 2 ] 父轮廓
- hierarchy[ i ][ 3 ] 内嵌轮廓
如果没有对应项,该值设置为负数。
mode:表示轮廓的检索模式
CV_RETR_EXTERNAL 表示只检测外轮廓
CV_RETR_LIST 检测的轮廓不建立等级关系
CV_RETR_CCOMP 建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
CV_RETR_TREE 建立一个等级树结构的轮廓。
method:为轮廓的近似办法
CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
CV_CHAIN_APPROX_SIMPLE 压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS 使用teh-Chinl chain 近似算法
offset:表示代表轮廓点的偏移量,可以设置为任意值。对ROI图像中找出的轮廓,并要在整个图像中进行分析时,这个参数还是很有用的。
findContours 后会对输入的二值图像改变,最好需创建新MAT来存放;
findContours 后的轮廓信息contours可能过于复杂不平滑,可以用 approxPolyDP() 对该多边形曲线做适当近似。
contourArea() 函数可以得到当前轮廓包含区域的大小,方便轮廓的筛选。
findContours经常与 drawContours() 配合使用,用来将轮廓绘制出来。
- 第一个参数,image表示目标图像
- 第二个参数,contours表示输入的轮廓组,每一组轮廓由点vector构成
- 第三个参数,contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓
- 第四个参数,color为轮廓的颜色
- 第五个参数,thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部
- 第六个参数,lineType为线型
- 第七个参数,为轮廓结构信息
- 第八个参数,为maxLevel
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull(),
- 输入参数,是contours组中的一个轮廓
- 返回,外凸包络的点集。
还可以得到轮廓的外包络矩形,使用函数 boundingRect(),
如果想得到旋转的外包络矩形,使用函数 minAreaRect(),返回值为RotatedRect;
也可以得到轮廓的外包络圆,对应的函数为 minEnclosingCircle();
想得到轮廓的外包络椭圆,对应的函数为 fitEllipse(),返回值也是RotatedRect,可以用ellipse函数画出对应的椭圆。
如果想根据多边形的轮廓信息 => 多边形的多阶矩,可以使用 类moments,这个类可以得到多边形和光栅形状的3阶以内的所有矩,
类内有变量m00,m10,m01,m20,m11,m02,m30,m21,m12,m03,
比如多边形的质心为 x = m10 / m00,y = m01 / m00。
如果想获得一点与多边形封闭轮廓的信息,可以调用 pointPolygonTest(),这个函数返回值为该点距离轮廓最近边界的距离,为正值为在轮廓内部,负值为在轮廓外部,0表示在边界上。
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <math.h>
#include <iostream> using namespace cv;
using namespace std; static void help()
{
cout
<< "\nThis program illustrates the use of findContours and drawContours\n"
<< "The original image is put up along with the image of drawn contours\n"
<< "Usage:\n"
<< "./contours2\n"
<< "\nA trackbar is put up which controls the contour level from -3 to 3\n"
<< endl;
} const int w = 500;
int levels = 3; vector<vector<Point> > contours;
vector<Vec4i> hierarchy; static void on_trackbar(int, void*)
{
Mat cnt_img = Mat::zeros(w, w, CV_8UC3);
int _levels = levels - 3;
drawContours( cnt_img, contours, _levels <= 0 ? 3 : -1, Scalar(128,255,255),
3, LINE_AA, hierarchy, std::abs(_levels) ); imshow("contours", cnt_img);
} int main( int argc, char** argv)
{
cv::CommandLineParser parser(argc, argv, "{help h||}");
if (parser.has("help"))
{
help();
return 0;
}
// Mat img = Mat::zeros(w, w, CV_8UC1); //Jeff --> we don't need to draw this by ourselves.
//Draw 6 faces
// for( int i = 0; i < 6; i++ )
// {
// int dx = (i%2)*250 - 30;
// int dy = (i/2)*150;
// const Scalar white = Scalar(255);
// const Scalar black = Scalar(0); // if( i == 0 )
// {
// for( int j = 0; j <= 10; j++ )
// {
// double angle = (j+5)*CV_PI/21;
// line(img, Point(cvRound(dx+100+j*10-80*cos(angle)),
// cvRound(dy+100-90*sin(angle))),
// Point(cvRound(dx+100+j*10-30*cos(angle)),
// cvRound(dy+100-30*sin(angle))), white, 1, 8, 0);
// }
// } // ellipse( img, Point(dx+150, dy+100), Size(100,70), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(30,20), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(30,20), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(15,15), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(15,15), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+115, dy+70), Size(5,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+185, dy+70), Size(5,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+150, dy+100), Size(10,5), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+150, dy+150), Size(40,10), 0, 0, 360, black, -1, 8, 0 );
// ellipse( img, Point(dx+27, dy+100), Size(20,35), 0, 0, 360, white, -1, 8, 0 );
// ellipse( img, Point(dx+273, dy+100), Size(20,35), 0, 0, 360, white, -1, 8, 0 );
// } Mat img = imread("/home/unsw/lolo.jpg");
Mat gray;
cvtColor(img, gray, COLOR_RGB2GRAY );
Mat binary;
threshold(gray, binary, 200,255,THRESH_BINARY); // (1) Pic One Show: show the faces
namedWindow( "image", 1 );
imshow( "image", binary ); // (2) Pic Two Show
//Extract the contours so that
vector<vector<Point> > contours0;
findContours( binary, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); contours.resize(contours0.size());
for( size_t k = 0; k < contours0.size(); k++ )
approxPolyDP(Mat(contours0[k]), contours[k], 3, true); // Jeff --> the same name to bind window and trackbar together.
// qt qml to draw would be much better.
// callback: on_trackbar()
namedWindow( "contours", 1 );
createTrackbar( "levels+3", "contours", &levels, 7, on_trackbar );
on_trackbar(0,0); waitKey();
return 0;
}
Reference: http://blog.csdn.net/felix86/article/details/38121959
采用cvFindContours提取轮廓,并过滤掉小面积轮廓,最后将轮廓保存。
static int getContoursByCplus(char* Imgname, double minarea, double whRatio)
{
cv::Mat src, dst, canny_output;
/// Load source image and convert it to gray
src = imread(Imgname, ); if (!src.data)
{
std::cout << "read data error!" << std::endl;
return -;
}
blur(src, src, Size(, )); //the pram. for findContours,
vector<vector<Point> > contours;
vector<Vec4i> hierarchy; /// Detect edges using canny
Canny(src, canny_output, , , );
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(, ));
//CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE double maxarea = ;
int maxAreaIdx = ; for (int i = ; i<contours.size(); i++)
{ double tmparea = fabs(contourArea(contours[i]));
if (tmparea>maxarea)
{
maxarea = tmparea;
maxAreaIdx = i;
continue;
} if (tmparea < minarea)
{
// *** 删除面积小于设定值的轮廓
contours.erase(contours.begin() + i);
std::wcout << "delete a small area" << std::endl;
continue;
}
//计算轮廓的直径宽高
Rect aRect =boundingRect(contours[i]);
if ((aRect.width / aRect.height)<whRatio)
{
// *** 删除宽高比例小于设定值的轮廓
contours.erase(contours.begin() + i);
std::wcout << "delete a unnomalRatio area" << std::endl;
continue;
}
}
/// Draw contours,彩色轮廓
dst= Mat::zeros(canny_output.size(), CV_8UC3);
for (int i = ; i< contours.size(); i++)
{
//随机颜色
Scalar color = Scalar(rng.uniform(, ), rng.uniform(, ), rng.uniform(, ));
drawContours(dst, contours, i, color, , , hierarchy, , Point());
}
// Create Window
char* source_window = "countors";
namedWindow(source_window, CV_WINDOW_NORMAL);
imshow(source_window, dst);
cv:; waitKey(); return ;
}
[OpenCV] Samples 04: contours2的更多相关文章
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- [OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
- [OpenCV] Samples 12: laplace
先模糊再laplace,也可以替换为sobel等. 变换效果后录成视频,挺好玩. #include "opencv2/videoio/videoio.hpp" #include & ...
- [OpenCV] Samples 05: convexhull
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边. 对于 ...
- [OpenCV] Samples 03: cout_mat
操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
随机推荐
- NGUI 3.0.7的新锚点系统设置不好就会造成显示错误的错觉
每次设置NGUI控件的锚点时,都需要刷新一下窗口,不然就会造成显示错误的错觉. 同时,NGUI控件设置锚点的参考对象为一个物体时还需要调整其控件大小,不然也会造成显示错误的错觉.
- Linux下安装tomcat
安装tomcat之前首先安装jdk,这个看前面的帖子. 下面说centeros6.5安装tomcat7的方法: 1.将apache-tomcat-7.0.29.tar.gz文件上传到/home/zha ...
- 打开mysql时,提示 1040,Too many connections
打开mysql时,提示 1040,Too many connections,这样就无法打开数据库,看不了表里边的内容了. 出现这个问题的原因是,同时对数据库的连接数过大,mysql默认的最大连接数是1 ...
- javascript的执行和预解析
很久以前遇到过一个面试题目,的的确确是面试官问我的问题,下面是这个问题的代码部分.由于年少无知,没有回答上,被无情pass了. var u ='hello world'; ;(function(){ ...
- 公共代码参考(Volley)
Volley 是google提供的一个网络库,相对于自己写httpclient确实方便很多,本文参考部分网上例子整理如下,以作备忘: 定义一个缓存类: public class BitmapCache ...
- 在GitHub注册账户的过程
(1)第一步:首先起一个属于自己用户的名字(username),用户名字只能包含字母数字的字符或者单个连字符,不能只用单个连字符开始或者结束(only contain alphanumeric cha ...
- Wix 安装部署教程(十四) -- 多语言安装包之用户许可协议
在上一篇中,留下了许可协议的问题,目前已经解决.感谢网友武全的指点! 问题 一般我们是用WixVariable 来设定许可协议.如下所示: <WixVariable Id="WixUI ...
- 防止开发人员获取到敏感数据(SQL Server的数据加密简介)
背景 有时候,我们还真的会碰到这样的需求:防止开发人员获取到敏感数据.也许你觉得很简单,把开发和运营分开不就可以了吗?是的,如果公司有专门的运营团队的话,但对于很多小公司来说,几个人的开发团队就兼顾了 ...
- VS2012下配置MPI
并行处理结课实验,要用到MPI编程,我的电脑和VS2012都是64位的,以为MPICH也得是64位才行,结果饶了很大的弯——配置正确,添加引用之后,仍然无法识别MPI函数. 后来换了个32位的MPIC ...
- PyQt5应用与实践
一个典型的GUI应用程序可以抽象为:主界面(菜单栏.工具栏.状态栏.内容区域),二级界面(模态.非模态),信息提示(Tooltip),程序图标等组成.本篇根据作者使用PyQt5编写的一个工具,介绍如何 ...