Katu Puzzle

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6714   Accepted: 2472

Description

Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

Xa op Xb = c

The calculating rules are:

AND 0 1
0 0 0
1 0 1
OR 0 1
0 0 1
1 1 1
XOR 0 1
0 0 1
1 1 0

Given a Katu Puzzle, your task is to determine whether it is solvable.

Input

The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

Output

Output a line containing "YES" or "NO".

Sample Input

4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR

Sample Output

YES

Hint

X0 = 1, X1 = 1, X2 = 0, X3 = 1.

Source

 
先进性tarjan算法找出强连通分量,判断每个点的取值是否矛盾,矛盾即为对于题意中每个点的0,1是否存在于一个强连通分量中,矛盾输出NO,不矛盾输出1;
建图规则:
a & b = 1 等价于 !a->a, !b->b;(旨在使得a或b取值为0是产生矛盾)
a & b = 0 等价于 a->!b, b->!a;
a | b = 1  等价于 !a->b, !b->a;
a | b = 0  等价于 a->!a, b->!b;
a ^ b = 1 等价于 !a->b, !b->a, a->!b, b->!a;
a ^ b = 0 等价于 a->b, b->a, !a->!b, !b->!a;  
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAX = 1005 * 2;
int n,m;
int head[MAX];
struct node {
int t,next;
}edge[4000000];
int cnt;
void add(int u, int v) {
edge[cnt].t = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
int bfn[MAX];
int low[MAX];
int vis[MAX];
int s[MAX];
int sn;
void tarbfs(int u, int lay, int & scc_num) {
vis[u] = 1;
bfn[u] = low[u] = lay;
s[sn++] = u;
int i;
for (i = head[u]; i != -1; i = edge[i].next) {
int tmp = edge[i].t;
if (!vis[tmp])tarbfs(tmp, ++lay, scc_num);
if (vis[tmp] == 1)low[u] = min(low[u], low[tmp]);
}
if (low[u] == bfn[u]) {
scc_num++;
while (1) {
sn--;
vis[s[sn]] = 2;
low[s[sn]] = scc_num;
if (s[sn] == u)break;
}
}
}
int tarjan() {
int scc_num = 0;
int lay = 1;
int i;
sn = 0;
memset(vis, 0, sizeof(vis));
for (i = 0; i < n; i++) {
if (!vis[i])
tarbfs(i, lay, scc_num);
}
return scc_num;
} int main() {
// freopen("in.txt","r",stdin);
int a,b,c;
char ch[5];
int i;
while (scanf("%d %d",&n,&m) != EOF) {
memset(head, -1, sizeof(head));
n = 2 * n;
cnt = 0;
for (i = 0; i < m; i++) {
scanf("%d %d %d %s",&a,&b,&c,ch);
if (ch[0] == 'A') {
if (c == 1) {
add(a<<1, a<<1|1);
add(b<<1, b<<1|1);
} else {
add(a<<1|1, b<<1);
add(b<<1|1, a<<1);
}
} else if (ch[0] == 'O') {
if (c == 1) {
add(a<<1, b<<1|1);
add(b<<1, a<<1|1);
} else {
add(a<<1|1, a<<1);
add(b<<1|1, b<<1);
}
} else {
if (c == 1) {
add(a<<1|1, b<<1);
add(b<<1|1, a<<1);
add(a<<1, b<<1|1);
add(b<<1, a<<1|1);
} else {
add(a<<1|1, b<<1|1);
add(b<<1|1, a<<1|1);
add(a<<1, b<<1);
add(b<<1, a<<1);
}
}
}
tarjan();
int flag = 0;
for (i = 0; i < n / 2; i++) {
if (low[i<<1] == low[i<<1|1]) {
flag = 1;
break;
}
}
if (flag)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}

  

poj3678 Katu Puzzle 2-SAT的更多相关文章

  1. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  2. POJ-3678 Katu Puzzle 2sat

    题目链接:http://poj.org/problem?id=3678 分别对and,or,xor推出相对应的逻辑关系: 逻辑关系 1 0  A and B     A'->A,B'->B ...

  3. poj 3678 Katu Puzzle(Two Sat)

    题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...

  4. POJ3678 Katu Puzzle

    原题链接 \(2-SAT\)模板题. 将\(AND,OR,XOR\)转换成\(2-SAT\)的命题形式连边,用\(tarjan\)求强连通分量并检验即可. #include<cstdio> ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  7. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  8. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

  9. poj 3678 Katu Puzzle 2-SAT 建图入门

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

随机推荐

  1. hive与hbase整合过程

    实现目标 Hive可以实时查询Hbase中的数据. hive中的表插入数据会同步更新到hbase对应的表中. 可以将hbase中不同的表中的列通过 left 或 inner join 方式映射到hiv ...

  2. Socket Server-基于NIO的TCP服务器

    NIO主要原理及使用 NIO采取通道(Channel)和缓冲区(Buffer)来传输和保存数据,它是非阻塞式的I/O,即在等待连接.读写数据(这些都是在一线程以客户端的程序中会阻塞线程的操作)的时候, ...

  3. 循环写入Insert 与 SqlBulkcopy

    /* Insert by Loop */ cmd.CommandText = "insert into BizSharedStore (BizSharedStoreId,BizSharedI ...

  4. 用Ant来做一键部署

    部署Java Web项目到远程服务器上,以前经常用的操作方式: 1.在eclipse上导出项目war包 2.把war包通过ftp方式传到服务器上,比如Tomcat的webapps目录下 3.启动tom ...

  5. C#开发分享:如何改变系统鼠标样式

    开发过程中发现需要用到改变鼠标样式(就是光标的样子),但是在网上找了很多资料,都是介绍在程序中使用,我需要的效果时在系统级使用.现在找到了,分享给大家. [DllImport("user32 ...

  6. terminator 安装及使用

    1. 安装 $ sudo apt-get install terminator 2. 右键设置首选项 背景设置为0.8透明度, 字体挤在一起:在ubuntu下请选择mono后缀的字体就可以了 3. 使 ...

  7. java编译后字节码解析

    java编译后字节码解析 参考网摘: https://my.oschina.net/indestiny/blog/194260

  8. [AIR] AIR 应用程序的调用和终止

    本节讨论几种对已安装的 Adobe® AIR® 应用程序进行调用的方法,以及关闭运行中的应用程序的选项和注意事项. 注: NativeApplication.InvokeEvent 和 Browser ...

  9. LAMP_03_Win下Apache+PHP+MySQL整合

    文件: Apache :  首先修改Apache的配置文件,让Apache支持解析PHP文件.Apache配置文件在Apache安装目录的conf目录下的httpd.conf.1. 让Apache可以 ...

  10. [Fraud] China UnionPay defrauded in Macau money laundering scandal

    Source: http://www.wantchinatimes.com/news-subclass-cnt.aspx?id=20140510000005&cid=1103 China Un ...