累了就要写题解,近期总是被虐到没脾气。

来回最短路问题貌似也能够用DP来搞。只是拿费用流还是非常方便的。

能够转化成求满流为2 的最小花费。一般做法为拆点,对于 i 拆为2*i 和 2*i+1。然后连一条流量为1(花费依据题意来定) 的边来控制每一个点仅仅能通过一次。

额外加入source和sink来控制满流为2。

代码都雷同,以HDU3376为例。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <cmath>
#include <stack>
#include <map> #pragma comment(linker, "/STACK:1024000000");
#define EPS (1e-8)
#define LL long long
#define ULL unsigned long long
#define _LL __int64
#define INF 0x3f3f3f3f
#define Mod 6000007 using namespace std; const int EDGE = 6000000,POINT = 730000; struct E
{
int Max,cost,v,next;
}edge[EDGE]; int head[POINT]; int Top; void Link(int u,int v,int w,int cost)
{
edge[Top].v = v;
edge[Top].Max = w;
edge[Top].cost = cost;
edge[Top].next = head[u];
head[u] = Top++;
} int Map[610][610]; int dis[POINT],cur[POINT],flow[POINT];
bool mark[POINT]; void Updata(int site,int flow,int &cost)
{
for(;cur[site] != -1; site = edge[cur[site]^1].v)
{
edge[cur[site]].Max -= flow;
edge[cur[site]^1].Max += flow;
cost += edge[cur[site]].cost * flow;
}
} queue<int> q; int spfa(int S,int T,int &cost)
{
memset(mark,false,sizeof(mark));
memset(dis,INF,sizeof(dis)); cur[S] = -1,dis[S] = 0,flow[S] = INF; q.push(S); int f,t; while(q.empty() == false)
{
f = q.front();
q.pop();
mark[f] = false; for(int p = head[f];p != -1; p = edge[p].next)
{
t = edge[p].v;
if(edge[p].Max && dis[t] > dis[f] + edge[p].cost)
{
dis[t] = dis[f] + edge[p].cost;
cur[t] = p;
flow[t] = min(flow[f],edge[p].Max); if(mark[t] == false)
{
mark[t] = true;
q.push(t);
}
}
}
} if(dis[T] == INF)
return 0;
Updata(T,flow[T],cost);
return flow[T];
} int Cal_Max_Flow_Min_Cost(int S,int T,int n)
{
int temp,flow = 0,cost = 0; do
{
temp = spfa(S,T,cost);
flow += temp;
}while(temp);
return cost;
} inline int Cal(int x,int y,int n)
{
return ((x-1)*n+y)*2-1;
} int main()
{
int n;
int i,j; while(scanf("%d",&n) != EOF)
{
memset(head,-1,sizeof(head));
Top = 0; for(i = 1;i <= n; ++i)
{
for(j = 1;j <= n; ++j)
{
scanf("%d",&Map[i][j]);
if(i == j && (i == 1 || i == n))
Link(Cal(i,j,n),Cal(i,j,n)+1,2,-Map[i][j]);
else
Link(Cal(i,j,n),Cal(i,j,n)+1,1,-Map[i][j]);
Link(Cal(i,j,n)+1,Cal(i,j,n),0,Map[i][j]);
}
} for(i = 1;i <= n; ++i)
{
for(j = 1;j <= n; ++j)
{
if(j < n)
{
Link(Cal(i,j,n)+1,Cal(i,j+1,n),1,0);
Link(Cal(i,j+1,n),Cal(i,j,n)+1,0,0);
}
if(i < n)
{
Link(Cal(i,j,n)+1,Cal(i+1,j,n),1,0);
Link(Cal(i+1,j,n),Cal(i,j,n)+1,0,0);
}
}
} printf("%d\n",-Cal_Max_Flow_Min_Cost(1,n*n*2,n*n*2) - Map[1][1] - Map[n][n]);
}
return 0;
}

POJ 2135 Farm Tour &amp;&amp; HDU 2686 Matrix &amp;&amp; HDU 3376 Matrix Again 费用流求来回最短路的更多相关文章

  1. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  2. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  3. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  4. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  5. POJ 2135 Farm Tour (费用流)

    [题目链接] http://poj.org/problem?id=2135 [题目大意] 有一张无向图,求从1到n然后又回来的最短路 同一条路只能走一次 [题解] 题目等价于求从1到n的两条路,使得两 ...

  6. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  7. POJ 2135.Farm Tour 消负圈法最小费用最大流

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4914   Accepted: 1284   ...

  8. POJ 2135 Farm Tour 最小费用流

    两条路不能有重边,既每条边的容量是1.求流量为2的最小费用即可. //#pragma comment(linker, "/STACK:1024000000,1024000000") ...

  9. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

随机推荐

  1. GPU下train 模型出现nan

    When training on GPU, the error "Model diverged with loss = NaN" is often caused by a sotm ...

  2. Java实现继承过程概述

    super(); 在调用子类的构造器的时候,如果没有显示的写出 super(); ,那么,编译器会在佛那个加上 super(); 无参构造器 如果想调用父类的有参构造器,那么,必须显示的调用,编译器不 ...

  3. 压缩跟踪Compressive Tracking(转)

    这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...

  4. js中的事件委托或是事件代理详解(转载)

    起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...

  5. Java 内存模型 ,一篇就够了!

    Java 虚拟机   我们都知道 Java 语言的可以跨平台的,这其中的核心是因为存在 Java 虚拟机这个玩意.虚拟机,顾名思义就是虚拟的机器,这不是真实存在的硬件,但是却可以和不同的底层平台进行交 ...

  6. python标准库--functools.partial

        官方相关地址:https://docs.python.org/3.6/library/functools.html 一.简单介绍: functools模块用于高阶函数:作用于或返回其他函数的函 ...

  7. BZOJ3779 : 重组病毒

    一个点的感染时间为它到根路径上虚边数+1. 用Link-Cut Tree模拟虚实边切换,每次切换时等价于在一段或两段DFS序区间更新,线段树维护即可. 时间复杂度$O(n\log^2n)$. #inc ...

  8. bzoj 2209 括号序列

    反转操作 + 翻转操作 = 对称操作 因为上面三个操作都是自己的逆操作,所以我们只需要实现对称操作和反转操作,就可以搞定翻转操作. #include <cstdio> #include & ...

  9. 【学习笔记】python的代码块(吐槽)

    曾经我以为python是像pascal那样begin开始end结束, 直到今天…… 我才知道python是用缩进作为代码段标识的…… >>> def test(n): ... if ...

  10. 如果想使用GIT Extentions的解决冲突窗口,安装时必须勾选KDIFF3

    因为第一次安装时,没有选择同时安装KDIFF3,所以遇到冲突时,点击合并,始终无法弹出合并窗口. 还有一个问题,就是在安装时,要选择OpenSSH,不要选择PuTTY.