Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End

Sample Output
Case 1:
6
33
59

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# include <queue>
# define LL long long
using namespace std ; const int maxn = ; int sum[maxn<<] ; //结点开4倍 void PushUP(int rt) //更新到父节点
{
sum[rt] = sum[rt * ] + sum[rt * + ] ; //rt 为当前结点
} void build(int l , int r , int rt) //构建线段树
{
if (l == r)
{
scanf("%d" , &sum[rt]) ;
return ;
}
int m = (l + r) / ;
build(l , m , rt * ) ;
build(m + , r , rt * +) ;
PushUP(rt) ;
} void updata(int p , int add , int l , int r , int rt) //单点增减
{
if (l == r)
{
sum[rt] += add ;
return ;
}
int m = (l + r) / ;
if (p <= m)
updata(p , add , l , m , rt * ) ;
else
updata(p , add , m + , r , rt * + ) ;
PushUP(rt) ;
} int query(int L , int R , int l , int r , int rt) //区间求和
{
if (L <= l && r <= R)
return sum[rt] ;
int m = (l + r) / ;
int ret = ;
if (L <= m)
ret += query(L , R , l , m , rt * ) ;
if (R > m)
ret += query(L , R , m + , r , rt * + ) ;
return ret ;
} int main ()
{
//freopen("in.txt","r",stdin) ;
int T , n;
int Case = ;
scanf("%d" , &T) ;
while (T--)
{
scanf("%d" , &n) ;
build( , n , ) ;
char op[] ;
Case++ ;
printf("Case %d:\n" , Case) ;
while (scanf("%s" , op))
{
if (op[] == 'E') //结束
break ;
int a , b ;
scanf("%d %d" , &a , &b) ;
if (op[] == 'Q') //求a,b区间的和
printf("%d\n", query(a , b , , n , )) ;
else if (op[] == 'S') //将第a个地方减少b
updata(a , -b , , n , ) ;
else if (op[] == 'A') //将第a个地方增加b
updata(a , b , , n , ) ;
}
} return ;
}

hdu 1166 线段树(单点增减 区间求和)的更多相关文章

  1. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  3. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  4. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  5. hdu1166(线段树单点更新&区间求和模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 题意:中文题诶- 思路:线段树单点更新,区间求和模板 代码: #include <iost ...

  6. hdu1394(枚举/树状数组/线段树单点更新&区间求和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给出一个循环数组,求其逆序对最少为多少: 思路:对于逆序对: 交换两个相邻数,逆序数 +1 ...

  7. hdu 1166 线段树单点更新

    等线段树复习完再做个总结 1101 2 3 4 5 6 7 8 9 10Query 1 3Add 3 6Query 2 7Sub 10 2Add 6 3Query 3 10End Case 1:633 ...

  8. HDU 3308 线段树单点更新+区间查找最长连续子序列

    LCIS                                                              Time Limit: 6000/2000 MS (Java/Oth ...

  9. Lightoj 1348 Aladdin and the Return Journey (树链剖分)(线段树单点修改区间求和)

    Finally the Great Magical Lamp was in Aladdin's hand. Now he wanted to return home. But he didn't wa ...

  10. I Hate It HDU - 1754 线段树 单点修改+区间最值

    #include<iostream> #include<cstring> using namespace std; ; int m,n,p; struct node{ int ...

随机推荐

  1. MT【186】四边形中的余弦定理

    在四边形$ABCD$中,若$AB=a,BC=b,CD=c,AD=d,AC=e,BD=f$,则 $$a^2c^2+b^2d^2=e^2f^2+2abcd\cos(A+C).$$ 注:这个结果可以看成是余 ...

  2. 广二模拟赛 Problem A: 青春野狼不做理性小魔女的梦 解题报告

    Problem A: 青春野狼不做理性小魔女的梦 题意 给一个长为\(k\)的序列\(A\)和一个数\(n\),给出一部分\(A_i\)的值,另一部分为\(-1\),代表不知道这个\(A_i\)是多少 ...

  3. SpringBoot整合Mybatis之xml

    SpringBoot整合Mybatis mybatis ORM框架.几个重要的概念: Mapper配置 : 可以使用基于XML的Mapper配置文件来实现,也可以使用基于Java注解的Mybatis注 ...

  4. 【LOJ#10131】暗的锁链

    题目大意:给定一个 N 个点无向图的一棵生成树和另外 M 条边,第一次去掉生成树中的一条边,第二次去掉另外 M 条边中的一条边,求有多少种情况可以使得给定的无向图不连通. 题解:首先考虑该生成树,若新 ...

  5. Qt error ------ qRegisterMetaType() 跨线程信号与槽的形参携带

    Qt提示: QObject::connect: Cannot queue arguments of type 'FrequencySpectrum' (Make sure 'FrequencySpec ...

  6. Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators

    Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.赋值运算符 表 ...

  7. JVM总结(一):概述--JVM运行时数据区

    大三下,趁着寒假重温一遍JVM,准备在一个系列来总价一下学习JVM的整个过程.争取在接下来的一个星期内更新完这一个系列,然后回家过年. JVM运行时数据区 线程私有的数据区 程序计数器 虚拟机栈 本地 ...

  8. C语言复习---打印菱形

    #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <math ...

  9. linux服务器安装mysql并配置外网访问

    linux服务器安装mysql并配置外网访问 更新系统,如果不运行该命令,直接安装mysql,会出现"有几个软件包无法下载 sudo apt-get update 安装mysql sudo ...

  10. Java与groovy混编 —— 一种兼顾接口清晰和实现敏捷的开发方式

    有大量平均水平左右的"工人"可被选择.参与进来 -- 这意味着好招人 有成熟的.大量的程序库可供选择 -- 这意味着大多数项目都是既有程序库的拼装,标准化程度高而定制化场景少 开发 ...