一,问题描述

构建一棵二叉树(不一定是二叉查找树),求出该二叉树中第K层中的结点个数(根结点为第0层)

二,二叉树的构建

定义一个BinaryTree类来表示二叉树,二叉树BinaryTree 又是由各个结点组成的,因此需要定义一个结点类BinaryNode,BinaryNode作为BinaryTree的内部类。

此外,在BinaryTree中需要一定一个BinaryNode属性来表示树的根结点。

 public class BinaryTree<T extends Comparable<? super T>> {

     private static class BinaryNode<T>{
T element;
BinaryNode<T> left;
BinaryNode<T> right; public BinaryNode(T element) {
this.element = element;
left = right = null;
} public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right){
this.element = element;
this.left = left;
this.right = right;
}
} private BinaryNode<T> root; //other code.....

第一行是二叉树类的定义,第三行是结点类的定义,第20行是二叉树根的定义。

三,求解第K层结点个数的算法实现

感觉对二叉树中的许多操作都可以用递归来实现。因此,二叉树是理解递归一个好实例。比如,二叉树的操作之统计二叉树中节点的个数二叉树的先序遍历和后序遍历的应用--输出文件和统计目录大小

求第K层结点的个数也可以用递归来实现:

①若二叉树为空或者K小于0,返回0

②若K等于0,第0层就是树根,根只有一个,返回1

③若K大于0,返回左子树中第K-1层结点个数 加上 右子树中第K-1层结点的个数

因为,第K层结点,相对于根的左子树 和 右子树 而言,就是第K-1层结点

其实,这是有改进的地方:对于K<0的情形,准确地说:它只是一个非法输入,而不是递归的结束条件(基准条件)。可以看出,①不要把非法输入与递归的基准条件混淆,②把非法输入的判断放到递归中判断的开销是很大的。因为每进行一次递归就需要进行一次非法输入判断。而如果在开始就把非法输入过滤掉,在递归过程中就不会存在每一次递归就判断一次非法输入了。

递归的基准条件只有两个:

1) k==0 当递归到K==0时,说明:第K层是有结点的

2) root==null  当递归到root==null时,说明:第K层没有结点

因此,可以进一步将代码改进如下:这样,不需要在每次递归的过程中还可能附加一次 k<0 的判断

     /**
*
* @param k
* @return 二叉树中第K层结点的个数(根位于第0层)
*/
public int k_nodes(int k){
if(k < 0)
return 0;
return k_nodes(root, k);
}
private int k_nodes(BinaryNode<T> root, int k){
if(root == null)
return 0;
if(k == 0)
return 1;//根结点
else
return k_nodes(root.left, k-1) + k_nodes(root.right, k-1);
}

可参考:按层打印二叉树--每行打印一层 来测试每一层是否有正确的结点个数。

四,代码实现

 public class BinaryTree<T extends Comparable<? super T>> {

     private static class BinaryNode<T>{
T element;
BinaryNode<T> left;
BinaryNode<T> right; public BinaryNode(T element) {
this.element = element;
left = right = null;
}
} private BinaryNode<T> root; /**
* 向二叉树中插入一个元素
* @param element
*/
public void insert(T element){
root = insert(root, element);
}
private BinaryNode<T> insert(BinaryNode<T> root, T element){
if(root == null)
return new BinaryNode<T>(element);
int r = (int)(2*Math.random());
//随机地将元素插入到左子树 或者 右子树中
if(r==0)
root.left = insert(root.left, element);
else
root.right = insert(root.right, element);
return root;
} /**
*
* @param k
* @return 二叉树中第K层结点的个数(根位于第0层)
*/
public int k_nodes(int k){
return k_nodes(root, k);
}
private int k_nodes(BinaryNode<T> root, int k){
if(root == null || k < 0)
return 0;
if(k == 0)
return 1;//根结点
else
return k_nodes(root.left, k-1) + k_nodes(root.right, k-1);
} public static void main(String[] args) {
BinaryTree<Integer> tree = new BinaryTree<>(); int[] ele = C2_2_8.algorithm1(4);//构造一个随机数组,数组元素的范围为[1,4]
for (int i = 0; i < ele.length; i++) {
tree.insert(ele[i]);
} int k_nodes = tree.k_nodes(2);//第二层
int k_nodes2 = tree.k_nodes(-1);//第-1层
int k_nodes3 = tree.k_nodes(0);
int k_nodes4 = tree.k_nodes(1);
int k_nodes5 = tree.k_nodes(4);//若超过了树的高度,结果为0
System.out.println(k_nodes);
System.out.println(k_nodes2);
System.out.println(k_nodes3);
System.out.println(k_nodes4);
System.out.println(k_nodes5);
}
}

关于 C2_2_8类,参考:随机序列生成算法---生成前N个整数的一组随机序列

五,参考资料

http://blog.csdn.net/luckyxiaoqiang/article/details/7518888

求二叉树中第K层结点的个数的更多相关文章

  1. 二叉树(9)----打印二叉树中第K层的第M个节点,非递归算法

    1.二叉树定义: typedef struct BTreeNodeElement_t_ { void *data; } BTreeNodeElement_t; typedef struct BTree ...

  2. 六:二叉树中第k层节点个数与二叉树叶子节点个数

    二叉树中第k层节点个数 递归解法: (1)假设二叉树为空或者k<1返回0 (2)假设二叉树不为空而且k==1.返回1 (3)假设二叉树不为空且k>1,返回左子树中k-1层的节点个数与右子树 ...

  3. 求二叉树第K层的节点个数+求二叉树叶子节点的个数

    size_t _FindLeafSize(Node* root)     //求二叉树叶子节点的个数    {        //static size_t count = 0;        if ...

  4. LeetCode OJ:Kth Smallest Element in a BST(二叉树中第k个最小的元素)

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  5. [LeetCode] Closest Leaf in a Binary Tree 二叉树中最近的叶结点

    Given a binary tree where every node has a unique value, and a target key k, find the value of the n ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. [LeetCode] Second Minimum Node In a Binary Tree 二叉树中第二小的结点

    Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...

  8. 求n!中因子k的个数

    思路: 求n的阶乘某个因子k的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通.其实n!可以表示成统一的方式. n!=(km)*(m!)*a ...

  9. hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的 ...

随机推荐

  1. chrome播放m3u8視頻失败

    由于项目后台需要播放m3u8视频,但此视频格式在移动端和Safari支持比较友善但是PC浏览器中都不太尽如人意,所以想在Chrome中播放只能借助第三方插件来播放. 有一款Video.js插件极大的简 ...

  2. OpenMPI源码剖析:网络通信原理(二) 如何选择网络协议?

    因为比较常用的是 TCP 协议,所以在 opal/mca/btl/tcp/btl_tcp.h 头文件中找到对应的 struct mca_btl_tcp_component_t { mca_btl_ba ...

  3. A1046. Shortest Distance(20)

    17/20,部分超时. #include<bits/stdc++.h> using namespace std; int N,x,pairs; int a,b; vector<int ...

  4. 微软职位内部推荐-SW Engineer II for WinCE

    微软近期Open的职位: Do you have a passion for embedded devices and services? &nbsp Does the following m ...

  5. TeamWork#3,Week5,Release Notes of the Alpha Version

    在这里的是一款你时下最不可或缺的一款美妙的产品. “今天哪家外卖便宜?” “今天这家店在哪个网站打折?” “这家店到底哪个菜好吃?” 这些问题你在寝室/办公室每天要问几次?还在为了找一家便宜的外卖店而 ...

  6. Linux内核分析作业四

    扒开系统调用的三层皮 一.用户态.内核态和中断 一般现代CPU都有几种不同的指令级别 在高级别执行级别下,代码可以执行特权指令,访问任意的物理地址,称之为内核态 在相应的低指令执行级别下,代码的掌控范 ...

  7. wordpress学习五: 通过wordpress_xmlrpc的python包远程操作wordpress

    wordpress提供了丰富的xmlrpc接口api来供我们远程操控wp的内容.伟大的开源社区有人就将这些api做了一下封装,提供了一个功能比较完整的python库,库的使用文档地址http://py ...

  8. C语言版本:双链表的实现

    Dlist.h #ifndef __DLIST_H__ #define __DLIST_H__ #include<cstdio> #include<malloc.h> #inc ...

  9. Software-Defined Networking:A Comprehensive Survey--Day2

    Software-Defined Networking:A Comprehensive Survey (续+1s) IV. SOFTWARE-DEFINED NETWORKS: BOTTOM-UP S ...

  10. codeforces4A

    Watermelon CodeForces - 4A Qingyu有一个简单的问题想让你解决. 输入一个数,如果它是2,或者它是奇数,输出NO,否则输出YES. 很简单吧,因此你应该很快解决. 输入 ...