一,问题描述

构建一棵二叉树(不一定是二叉查找树),求出该二叉树中第K层中的结点个数(根结点为第0层)

二,二叉树的构建

定义一个BinaryTree类来表示二叉树,二叉树BinaryTree 又是由各个结点组成的,因此需要定义一个结点类BinaryNode,BinaryNode作为BinaryTree的内部类。

此外,在BinaryTree中需要一定一个BinaryNode属性来表示树的根结点。

 public class BinaryTree<T extends Comparable<? super T>> {

     private static class BinaryNode<T>{
T element;
BinaryNode<T> left;
BinaryNode<T> right; public BinaryNode(T element) {
this.element = element;
left = right = null;
} public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right){
this.element = element;
this.left = left;
this.right = right;
}
} private BinaryNode<T> root; //other code.....

第一行是二叉树类的定义,第三行是结点类的定义,第20行是二叉树根的定义。

三,求解第K层结点个数的算法实现

感觉对二叉树中的许多操作都可以用递归来实现。因此,二叉树是理解递归一个好实例。比如,二叉树的操作之统计二叉树中节点的个数二叉树的先序遍历和后序遍历的应用--输出文件和统计目录大小

求第K层结点的个数也可以用递归来实现:

①若二叉树为空或者K小于0,返回0

②若K等于0,第0层就是树根,根只有一个,返回1

③若K大于0,返回左子树中第K-1层结点个数 加上 右子树中第K-1层结点的个数

因为,第K层结点,相对于根的左子树 和 右子树 而言,就是第K-1层结点

其实,这是有改进的地方:对于K<0的情形,准确地说:它只是一个非法输入,而不是递归的结束条件(基准条件)。可以看出,①不要把非法输入与递归的基准条件混淆,②把非法输入的判断放到递归中判断的开销是很大的。因为每进行一次递归就需要进行一次非法输入判断。而如果在开始就把非法输入过滤掉,在递归过程中就不会存在每一次递归就判断一次非法输入了。

递归的基准条件只有两个:

1) k==0 当递归到K==0时,说明:第K层是有结点的

2) root==null  当递归到root==null时,说明:第K层没有结点

因此,可以进一步将代码改进如下:这样,不需要在每次递归的过程中还可能附加一次 k<0 的判断

     /**
*
* @param k
* @return 二叉树中第K层结点的个数(根位于第0层)
*/
public int k_nodes(int k){
if(k < 0)
return 0;
return k_nodes(root, k);
}
private int k_nodes(BinaryNode<T> root, int k){
if(root == null)
return 0;
if(k == 0)
return 1;//根结点
else
return k_nodes(root.left, k-1) + k_nodes(root.right, k-1);
}

可参考:按层打印二叉树--每行打印一层 来测试每一层是否有正确的结点个数。

四,代码实现

 public class BinaryTree<T extends Comparable<? super T>> {

     private static class BinaryNode<T>{
T element;
BinaryNode<T> left;
BinaryNode<T> right; public BinaryNode(T element) {
this.element = element;
left = right = null;
}
} private BinaryNode<T> root; /**
* 向二叉树中插入一个元素
* @param element
*/
public void insert(T element){
root = insert(root, element);
}
private BinaryNode<T> insert(BinaryNode<T> root, T element){
if(root == null)
return new BinaryNode<T>(element);
int r = (int)(2*Math.random());
//随机地将元素插入到左子树 或者 右子树中
if(r==0)
root.left = insert(root.left, element);
else
root.right = insert(root.right, element);
return root;
} /**
*
* @param k
* @return 二叉树中第K层结点的个数(根位于第0层)
*/
public int k_nodes(int k){
return k_nodes(root, k);
}
private int k_nodes(BinaryNode<T> root, int k){
if(root == null || k < 0)
return 0;
if(k == 0)
return 1;//根结点
else
return k_nodes(root.left, k-1) + k_nodes(root.right, k-1);
} public static void main(String[] args) {
BinaryTree<Integer> tree = new BinaryTree<>(); int[] ele = C2_2_8.algorithm1(4);//构造一个随机数组,数组元素的范围为[1,4]
for (int i = 0; i < ele.length; i++) {
tree.insert(ele[i]);
} int k_nodes = tree.k_nodes(2);//第二层
int k_nodes2 = tree.k_nodes(-1);//第-1层
int k_nodes3 = tree.k_nodes(0);
int k_nodes4 = tree.k_nodes(1);
int k_nodes5 = tree.k_nodes(4);//若超过了树的高度,结果为0
System.out.println(k_nodes);
System.out.println(k_nodes2);
System.out.println(k_nodes3);
System.out.println(k_nodes4);
System.out.println(k_nodes5);
}
}

关于 C2_2_8类,参考:随机序列生成算法---生成前N个整数的一组随机序列

五,参考资料

http://blog.csdn.net/luckyxiaoqiang/article/details/7518888

求二叉树中第K层结点的个数的更多相关文章

  1. 二叉树(9)----打印二叉树中第K层的第M个节点,非递归算法

    1.二叉树定义: typedef struct BTreeNodeElement_t_ { void *data; } BTreeNodeElement_t; typedef struct BTree ...

  2. 六:二叉树中第k层节点个数与二叉树叶子节点个数

    二叉树中第k层节点个数 递归解法: (1)假设二叉树为空或者k<1返回0 (2)假设二叉树不为空而且k==1.返回1 (3)假设二叉树不为空且k>1,返回左子树中k-1层的节点个数与右子树 ...

  3. 求二叉树第K层的节点个数+求二叉树叶子节点的个数

    size_t _FindLeafSize(Node* root)     //求二叉树叶子节点的个数    {        //static size_t count = 0;        if ...

  4. LeetCode OJ:Kth Smallest Element in a BST(二叉树中第k个最小的元素)

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  5. [LeetCode] Closest Leaf in a Binary Tree 二叉树中最近的叶结点

    Given a binary tree where every node has a unique value, and a target key k, find the value of the n ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. [LeetCode] Second Minimum Node In a Binary Tree 二叉树中第二小的结点

    Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...

  8. 求n!中因子k的个数

    思路: 求n的阶乘某个因子k的个数,如果n比较小,可以直接算出来,但是如果n很大,此时n!超出了数据的表示范围,这种直接求的方法肯定行不通.其实n!可以表示成统一的方式. n!=(km)*(m!)*a ...

  9. hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的 ...

随机推荐

  1. JQ_五星级评分特效

    代码如下:<!DOCTYPE HTML><html><head><meta http-equiv="Content-Type" conte ...

  2. npm install的几种命令形式区别

    转自未来与传说.jigetage 我们在使用 npm install 安装模块的时候 ,一般会使用下面这几种命令形式: npm install moduleName # 安装模块到项目目录下 npm ...

  3. c# 简易绘制C语言头文件包含关系图 v2.0

    老规矩,先上图 节点样式说明: 1.粉色圆角,说明该节点下有循环引用 2.黄色菱形,说明该节点代表的文件在项目目录下未找到. 3.红色圆角,说明循环引用(从开始到最终,这种感情没变过,没有谁..... ...

  4. Linux内核分析第一周——计算机是如何工作的

    冯诺依曼体系结构 核心思想 1.冯诺依曼是:数字计算机的数制采用二进制:计算机应该按照程序顺序执行. 2.采用二进制作为计算机数值计算的基础,以0.1代表数值.不采用人类常用的十进制计数方法,二进制使 ...

  5. YQCB冲刺第二周第四天

    站立会议 任务看板 今天的任务为实现精准查账的功能. 昨天的任务为实现查看消费明细的功能. 遇到的问题为忘记在记账记录的表中添加用户名一栏,这样导致不同用户登录时查看消费明细会显示所有用户的所有记录.

  6. FINAL视频预发布

    视频地址:http://v.youku.com/v_show/id_XMTg0MjMzNDIwNA==.html?spm=a2hzp.8253869.0.0&from=y1.7-2

  7. [51CTO]新说MySQL事务隔离级别!

    新说MySQL事务隔离级别! 事务隔离级别这个问题,无论是校招还是社招,面试官都爱问!然而目前网上很多文章,说句实在话啊,我看了后我都怀疑作者弄懂没!本文所讲大部分内容,皆有官网作为佐证,因此对本文内 ...

  8. [转帖]Prometheus+Grafana监控Kubernetes

    原博客的位置: https://blog.csdn.net/shenhonglei1234/article/details/80503353 感谢原作者 这里记录一下自己试验过程中遇到的问题: . 自 ...

  9. FuelPHP 系列(一) ------ Oil 命令

    之前用过 Laravel,框架自带的 artisan 命令,用得爽到爆.现在工作需要,要学习 FuelPHP,首先看到框架目录结构,有 coposer.json 框架可以用 composer 管理,一 ...

  10. IdeaVim-常用操作(转载)

    IdeaVim简介 IdeaVim是IntelliJ IDEA的一款插件,他提高了我们写代码的速度,对代码的跳转,查找也很友好. 安装位置 安装之后它在 Tools > Vim Emulator ...