poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 15349 | Accepted: 7379 |
Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
给n,m1,m2
n头牛,每头牛跟其他的牛直接的距离有一定的约束
m1个约束1,m2个约束2
约束1:
a b c 表示a牛和b牛之间的距离最多c
约束2:
a b c 表示a牛和b牛之间的距离最少c
问你两头牛之间的最大距离至少是多少才能满足所有的约束
x[i]表示牛i的在x[i]处或者说牛i在距离原点x[i]的地方
x[a]-x[b]<=c
约束2可以表示为:
x[b]-x[a]<=-c
按照j到i建图,权值为c
然后起点是1,跑个最短路(不能使用dj,因为存在负权)
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww){}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=;i<max_v;i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=;j<G[u].size();j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=;j<G[u].size();j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,a,b;
while(~scanf("%d %d %d",&n,&a,&b))
{
init();
int x,y,w;
while(a--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(x,y))
G[x].push_back(node(y,w));
}
while(b--)
{
scanf("%d %d %d",&x,&y,&w);
if(f(y,x))
G[y].push_back(node(x,-w));
}
int flag=spfa(,n);
if(flag==)
{
printf("-1\n");
}else if(dis[n]<INF)
{
printf("%lld\n",dis[n]);
}else
{
printf("-2\n");
}
}
return ;
}
/*
题目意思:
给n,m1,m2
n头牛,每头牛跟其他的牛直接的距离有一定的约束
m1个约束1,m2个约束2
约束1:
a b c 表示a牛和b牛之间的距离最多c
约束2:
a b c 表示a牛和b牛之间的距离最少c
问你两头牛之间的最大距离至少是多少才能满足所有的约束 分析:
x[i]表示牛i的在x[i]处或者说牛i在距离原点x[i]的地方 约束1可以表示为:
x[a]-x[b]<=c
约束2可以表示为:
x[b]-x[a]<=-c <=代表的是最大值,代表的是最短路,表达式形式为x[i]-x[j]<=c
按照j到i建图,权值为c
然后起点是1,跑个最短路(不能使用dj,因为存在负权)
1到n的最短路就是能满足所有牛约束的最小距离值 */
poj 3169 Layout(线性差分约束,spfa:跑最短路+判断负环)的更多相关文章
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- HDU 3592 World Exhibition(线性差分约束,spfa跑最短路+判断负环)
World Exhibition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- poj 3169 Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
- O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...
- POJ 3167 Layout(差分约束)
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
随机推荐
- win7游戏窗口设置
在开始搜索框输入regedit打开注册表,定位到HKEY_LOCAL_MACHINE------SYSTEM------ControlSet001-------Control-------Graphi ...
- PDO中的预处理
PDO中的基本的原理和步骤和MySQL中的预处理都是一样的,只不过就是把MySQL中的预处理所有命令行的语法封装成了PDO对象的几个公开的方法而已! 1.发送预处理语句 此时,我们需要调用pdo对象的 ...
- 使用ThinkPHP实现附件上传
刚学的使用ThinkPHP框架简单上传附件(图片,文档,视频等文件) 首先需要了解tp框架中Upload.class.php(ThinkPHP/Library/Think/Upload,class,p ...
- codevs1735 方程的解数(meet in the middle)
题意 题目链接 Sol 把前一半放在左边,后一半放在右边 meet in the middle一波 统计答案的时候开始想的是hash,然而MLE了两个点 实际上只要排序之后双指针扫一遍就行了 #inc ...
- JS中的兼容问题总结
今天总结总结在JS里面遇到的兼容性问题 1.获取滚动距离的兼容性问题: document.documentElement.scrollTop || document.body.scrollTop ...
- Expo大作战(八)--expo中的publish以及expo中的link,对link这块东西没有详细看,大家可以来和我交流
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,将全部来与官网 我猜去全部机翻+个人 ...
- [经典Bug]Android-初始化闪屏不消失
问题描述: 业务上初始化过程要求显示闪屏界面,某个版本更新后,发现部分场景下,初始化完成后闪屏界面不消失. 问题原因: 初始化是在子线程进行,闪屏属于UI界面,需要UI线程展示.初始化过程和闪屏显示在 ...
- mysql 安全模式
今天,执行一条delete语句的时候报错如下: Error Code: 1175. You are using safe update mode and you tried to update a t ...
- LeetCode题解之Copy List with Random Pointer
1.题目描述 2.问题分析 首先要完成一个普通的单链表的深度复制,然后将一个旧的单链表和新的单链表的节点使用map对应起来,最后,做一次遍历即可. 3.代码 RandomListNode *copyR ...
- mysql 内存统计
在 mysql 5.5 中实现了类似mysql5.7中performance schema 的内存统计功能. 功能 1 展示mysql层内存总大小. 2 展示mysql层内存使用分布情况. 3 展示每 ...