609E- Minimum spanning tree for each edge
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
Input
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Output
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
Examples
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9 次小生成树模板:
lca+倍增+最小生成树
#define eps 1e-6
#define ll long long
#define pii pair<int, int>
#define pb push_back
#define mp make_pair
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<algorithm>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int N = ;
//*************************
int n, m;
//kruscal
struct tree
{
int a,b,w;
} p[N],s[N];
int p1[N];
int rk1[N];
//倍增
int fa[N][], max_e[N][], dep[N];
//lca
struct edge
{
int to, nxt,w;
} e[N<<];
int fst[N], tot;
struct query
{
int to,nxt;
int idx;
} Q[N<<];
int h[N],tt;
int p2[N],rk2[N];
int acr[N], ans[N];
bool vis[N];
//************************
void CLS()
{
tot = ;
memset(fst,-,sizeof(fst));
tt = ;
for(int i=; i<=n; i++)p1[i]=i,p2[i]=i;
memset(h,-,sizeof(h));
}
void add(int u,int v,int w)
{
e[++tot].to = v;
e[tot].w = w;
e[tot].nxt = fst[u];
fst[u] = tot;
}
void add_Q(int u,int v,int idx)
{
Q[++tt].to = v;
Q[tt].nxt = h[u];
Q[tt].idx = idx;
h[u] = tt;
}
//kruscal
bool cmp(tree x,tree y)
{
return x.w<y.w;
}
int find_p(int x)
{
return x == p1[x] ? x : p1[x]=find_p(p1[x]);
}
void uone1(int x,int y)
{
int t1=find_p(x);
int t2=find_p(y);
if(t1!=t2)
{
if(rk1[t1]>rk1[t2])p1[t2]=t1;
else p1[t1]=t2;
if(rk1[t1]==rk1[t2])rk1[t2]++;
}
}
ll kruscal()
{
ll res = ;
sort(p+, p+m+, cmp);
int cnt=;
for (int i = ; i <= m; i++)
{
int x=p[i].a;
int y=p[i].b;
int w=p[i].w;
if(find_p(x)!=find_p(y))
{
cnt++;
uone1(x,y);
res+=w;
add(x,y,w);
add(y,x,w);
if(cnt==n-)break;
}
}
return res;
} //倍增
void init_fa(int u, int p, int w)
{
dep[u] = dep[p] + ;
fa[u][] = p;
max_e[u][] = w;
for (int i = ; fa[u][i-]; i++)
{
fa[u][i] = fa[ fa[u][i-] ][i-];
max_e[u][i] = max(max_e[u][i-], max_e[ fa[u][i-] ][i-]);
}
} int cal(int u, int lca)
{
int d = dep[u] - dep[lca];
int res = ;
for(int i = ; i >= ; i--)
{
if ((<<i) <= d)
{
d -= (<<i);
res = max(res, max_e[u][i]);
u = fa[u][i];
}
}
return res;
} //LCA
int find_q(int x)
{
return x == p2[x] ? x : p2[x]=find_q(p2[x]);
}
void uone2(int x,int y)
{
int t1=find_q(x);
int t2=find_q(y);
if(t1!=t2)
{
if(rk2[t1]>rk2[t2])p2[t2]=t1;
else p2[t1]=t2;
if(rk2[t1]==rk2[t2])rk2[t2]++;
}
}
void LCA(int u)
{
vis[u] = ;
acr[u] = u;
for(int p = fst[u]; p != -; p = e[p].nxt)
{
int v = e[p].to;
if(vis[v]) continue;
init_fa(v, u, e[p].w);
LCA(v);
uone2(u,v);
acr[find_q(u)] = u;
}
for(int p = h[u]; p != -; p = Q[p].nxt)
{
int v = Q[p].to;
if(vis[v]) ans[Q[p].idx] = acr[find_q(v)];
}
} int main()
{
// freopen("input.txt", "r", stdin);
scanf("%d%d", &n, &m);
CLS();
for (int i = ; i <= m; i++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
p[i].a=s[i].a=a;
p[i].b=s[i].b=b;
p[i].w=s[i].w=w;
add_Q(a,b,i);
add_Q(b,a,i);
}
ll tmp = kruscal();
LCA();
for (int i = ; i <= m; i++)
printf("%I64d\n", tmp+s[i].w-max(cal(s[i].a, ans[i]), cal(s[i].b, ans[i])));
return ;
}
609E- Minimum spanning tree for each edge的更多相关文章
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge
题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边) 分析:求出这个图的最小生成树,用最小生成树上的边建图 对于每条边,不外乎两种情况 1:该边就是最小生成树上的边,那么答案显然 2 ...
- codeforces 609E. Minimum spanning tree for each edge 树链剖分
题目链接 给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值. 先将最小生成树求出来, 把树边都标记. 然后对标记的边的两个端点, 我们add(u, v), ...
- cf 609E.Minimum spanning tree for each edge
最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
随机推荐
- POJ1222(SummerTrainingDay01-E)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11078 Accepted: 7 ...
- BZOJ5322: [JXOI2018]排序问题
传送门 不难看出期望就是 \(\frac{(n+m)!}{\prod_{v=1}^{max}(cnt_v!)}\),\(cnt_v\) 表示 \(v\) 这个数出现的次数. 贪心就是直接把 \(m\) ...
- cf113D. Museum(期望 高斯消元)
题意 题目链接 Sol 设\(f[i][j]\)表示Petya在\(i\),\(Vasya\)在\(j\)的概率,我们要求的是\(f[i][i]\) 直接列方程高斯消元即可,由于每个状态有两维,因此时 ...
- android开发之braodCast
广播问题: 遇到了broadcast中sendBroadcast之后,注册registerReceiver的receiver接受不到广播,原因是permisson权限问题. 自定义的permissio ...
- iOS设计模式-原型模式
| 导语 定义:用原型实例指定创建对象的种类,并通过拷贝这些原型创建新的对象. 通过深复制(克隆.拷贝)一个指定类型的对象来创建更多同类型的对象.这个指定的对象可被称为“原型”对象,也就是通过复制原型 ...
- ESLint 使用方法
一.全局安装 npm install -g eslint 二.生成配置文件 在项目根目录执行init,生成.eslintrc文件.在init时,要求根目录存在package.json.当然也可以直接复 ...
- Hive Serde - CSV、TSV
CSV hive-0.14.0内置支持CSV Serde,以前的版本需要引入第三方库的jar包(http://https://github.com/ogrodnek/csv-serde) 现在有个文本 ...
- [iOS] 列表滑动展开隐藏头部HeaderView
平常遇到大多数的带有列表的应用都会遇到这个场景:在列表顶端有一个Header,当向上滑动列表时,压缩header,向下滑动列表到头时,展开header.这种样式在例如微博,twitter这些展示动态的 ...
- 【Python】爬取网站图片
import requests import bs4 import urllib.request import urllib import os hdr = {'User-Agent': 'Mozil ...
- python request 接口自动化设计
设计思路: * 数据驱动 * 测试结果以邮件形式发送 * 保留测试过程的用例和请求结果到日志,方便查问题 设计如下: * bin * casehandler 读取txt或者xls文件中的用例,一个文件 ...