CF 329B(Biridian Forest-贪心-非二分)
2 seconds
256 megabytes
standard input
standard output
You're a mikemon breeder currently in the middle of your journey to become a mikemon master. Your current obstacle is go through the infamous Biridian Forest.
The forest
The Biridian Forest is a two-dimensional grid consisting of r rows and c columns. Each cell in Biridian Forest may contain a tree, or may be vacant. A vacant cell may be occupied by zero or more mikemon breeders (there may also be breeders other than you in the forest). Mikemon breeders (including you) cannot enter cells with trees. One of the cells is designated as the exit cell.
The initial grid, including your initial position, the exit cell, and the initial positions of all other breeders, will be given to you. Here's an example of such grid (from the first example):
Moves
Breeders (including you) may move in the forest. In a single move, breeders may perform one of the following actions:
- Do nothing.
- Move from the current cell to one of the four adjacent cells (two cells are adjacent if they share a side). Note that breeders cannot enter cells with trees.
- If you are located on the exit cell, you may leave the forest. Only you can perform this move — all other mikemon breeders will never leave the forest by using this type of movement.
After each time you make a single move, each of the other breeders simultaneously make a single move (the choice of which move to make may be different for each of the breeders).
Mikemon battle
If you and t (t > 0) mikemon breeders are located on the same cell, exactly t mikemon battles will ensue that time (since you will be battling each of those t breeders once). After the battle, all of those t breeders will leave the forest to heal their respective mikemons.
Note that the moment you leave the forest, no more mikemon battles can ensue, even if another mikemon breeder move to the exit cell immediately after that. Also note that a battle only happens between you and another breeders — there will be no battle between two other breeders (there may be multiple breeders coexisting in a single cell).
Your goal
You would like to leave the forest. In order to do so, you have to make a sequence of moves, ending with a move of the final type. Before you make any move, however, you post this sequence on your personal virtual idol Blog. Then, you will follow this sequence of moves faithfully.
Goal of other breeders
Because you post the sequence in your Blog, the other breeders will all know your exact sequence of moves even before you make your first move. All of them will move in such way that will guarantee a mikemon battle with you, if possible. The breeders that couldn't battle you will do nothing.
Your task
Print the minimum number of mikemon battles that you must participate in, assuming that you pick the sequence of moves that minimize this number. Note that you are not required to minimize the number of moves you make.
The first line consists of two integers: r and c (1 ≤ r, c ≤ 1000), denoting the number of rows and the number of columns in Biridian Forest. The next r rows will each depict a row of the map, where each character represents the content of a single cell:
- 'T': A cell occupied by a tree.
- 'S': An empty cell, and your starting position. There will be exactly one occurence of this in the map.
- 'E': An empty cell, and where the exit is located. There will be exactly one occurence of this in the map.
- A digit (0-9): A cell represented by a digit X means that the cell is empty and is occupied by X breeders (in particular, if X is zero, it means that the cell is not occupied by any breeder).
It is guaranteed that it will be possible for you to go from your starting position to the exit cell through a sequence of moves.
A single line denoted the minimum possible number of mikemon battles that you have to participate in if you pick a strategy that minimize this number.
5 7
000E0T3
T0TT0T0
010T0T0
2T0T0T0
0T0S000
3
1 4
SE23
2
The following picture illustrates the first example. The blue line denotes a possible sequence of moves that you should post in your blog:
The three breeders on the left side of the map will be able to battle you — the lone breeder can simply stay in his place until you come while the other two breeders can move to where the lone breeder is and stay there until you come. The three breeders on the right does not have a way to battle you, so they will stay in their place.
For the second example, you should post this sequence in your Blog:
Here's what happens. First, you move one cell to the right.
Then, the two breeders directly to the right of the exit will simultaneously move to the left. The other three breeder cannot battle you so they will do nothing.
You end up in the same cell with 2 breeders, so 2 mikemon battles are conducted. After those battles, all of your opponents leave the forest.
Finally, you make another move by leaving the forest.
一句话题解:所有人到终点等它即可。。。
完全没想到是有多弱?。。。。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,m,tx,ty,sx,sy;
char c[MAXN][MAXN];
bool b[MAXN][MAXN]={0};
int qx[MAXN*MAXN],qy[MAXN*MAXN],head=1,tail=1,d[MAXN][MAXN];
void bfs()
{
qx[1]=tx,qy[1]=ty;b[tx][ty]=1;
memset(d,127,sizeof(d));d[tx][ty]=0;
while (head<=tail)
{
int x=qx[head],y=qy[head];
if (1<x&&!b[x-1][y]) b[x-1][y]=1,d[x-1][y]=d[x][y]+1,qx[++tail]=x-1,qy[tail]=y;
if (x<n&&!b[x+1][y]) b[x+1][y]=1,d[x+1][y]=d[x][y]+1,qx[++tail]=x+1,qy[tail]=y;
if (1<y&&!b[x][y-1]) b[x][y-1]=1,d[x][y-1]=d[x][y]+1,qx[++tail]=x,qy[tail]=y-1;
if (y<m&&!b[x][y+1]) b[x][y+1]=1,d[x][y+1]=d[x][y]+1,qx[++tail]=x,qy[tail]=y+1;
head++;
} }
int main()
{
// freopen("Biridian Forest.in","r",stdin);
scanf("%d%d",&n,&m);
For(i,n) scanf("%s",c[i]+1);
For(i,n) For(j,m)
if (c[i][j]=='S') sx=i,sy=j;
else if (c[i][j]=='E') tx=i,ty=j;
else if (c[i][j]=='T') b[i][j]=1;
bfs();
/*
For(i,n)
{
For(j,m) cout<<d[i][j]<<' ';cout<<endl;
}
*/
int ans=0;
For(i,n) For(j,m)
if (d[i][j]<=d[sx][sy]&&isdigit(c[i][j])) ans+=c[i][j]-48;
cout<<ans<<endl; return 0;
}
CF 329B(Biridian Forest-贪心-非二分)的更多相关文章
- Codeforces Round #192 (Div. 1) B. Biridian Forest 暴力bfs
B. Biridian Forest Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/329/pr ...
- [Codeforces Round #192 (Div. 2)] D. Biridian Forest
D. Biridian Forest time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 1118 Birds in Forest (25 分)
1118 Birds in Forest (25 分) Some scientists took pictures of thousands of birds in a forest. Assume ...
- 【Codeforces 329B】Biridian Forest
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 找到出口到每个点的最短距离. 设你到出口的最短距离为temp 那么如果某个人到终点的距离<=temp,则他们肯定能遇到你 因为他们可以在 ...
- CF 161B Discounts(贪心)
题目链接: 传送门 Discounts time limit per test:3 second memory limit per test:256 megabytes Description ...
- CF 115B Lawnmower(贪心)
题目链接: 传送门 Lawnmower time limit per test:2 second memory limit per test:256 megabytes Description ...
- CF Soldier and Badges (贪心)
Soldier and Badges time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- CF Anya and Ghosts (贪心)
Anya and Ghosts time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- PAT A1118 Birds in Forest (25 分)——并查集
Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in ...
随机推荐
- 【Vue实战之路】一、Vue-cli入门及Vue工程目录全解。
全面的Vue-cli学习,这一篇就够了! 一.下载 使用vue-cli前,需先安装node.js,node的安装就不赘述,不过在此需要注意: 1. node版本需在4.x以上,首推6.x以上版本(no ...
- 命令:mktemp
简介 mktemp命令用于创建一个临时的文件或者目录. 语法格式 mktemp [OPTION]... [TEMPLATE] 示例 不带选项和参数的mktemp用于创建临时文件,带-d选项用于创建临时 ...
- ArduinoYun教程之OpenWrt-Yun与CLI配置Arduino Yun
ArduinoYun教程之OpenWrt-Yun与CLI配置Arduino Yun OpenWrt-Yun OpenWrt-Yun是基于OpenWrt的一个Linux发行版.有所耳闻的读者应该听说他是 ...
- 【WIN10】WIN2D——繪製文字
先看下截圖: 做了幾個效果:普通.倒影.陰影.歌詞. 普通效果代碼: private void normal_Draw(Microsoft.Graphics.Canvas.UI.Xaml.Canvas ...
- BZOJ.3058.四叶草魔杖(Kruskal 状压DP)
题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的, ...
- [Java]jdbc[转]
>>http://www.cnblogs.com/xiohao/p/3507483.html >>http://www.cnblogs.com/hongten/archive/ ...
- python调用oracle存储过程(packeage)
http://markmail.org/message/y64t5mqlgy4rogte http://www.oracle.com/technetwork/cn/articles/prez-stor ...
- HDU 4763 Theme Section (2013长春网络赛1005,KMP)
Theme Section Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- Modbus TCP和Modbus Rtu协议的区别 转
http://blog.csdn.net/educast/article/details/9177679 Modbus rtu和Modbus tcp两个协议的本质都是MODBUS协议,都是靠MOD ...
- RxJS 简介:可观察对象、观察者与操作符
RxJS 简介:可观察对象.观察者与操作符 对于响应式编程来说,RxJS 是一个不可思议的工具.今天我们将深入探讨什么是 Observable(可观察对象)和 observer(观察者),然后了解如何 ...