不连续的处理很麻烦

导致序列DP又找不到优秀的子问题

自底向上考虑?

建立小根堆笛卡尔树

每个点的意义是:高度是(自己-father)的横着的极大矩形

子问题具有递归的优秀性质

f[i][j]i为根子树,放j个

儿子背包合并

考虑本层的矩形放多少个

枚举一共放t个,本层放j个

对于子树里的放置的t-j个,不论怎么放,一定占据了t-j列,剩下W[i]-(t-j)个位置

转移是:

https://blog.csdn.net/qq_39972971/article/details/79359547

当前节点的:枚举放多少个、占哪些行、占哪些列、具体先后顺序。

代码:

C(n,m)时刻注意n>=0&&m>=0&&n>=m否则<0越界还看不出来调死

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define int long long
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=;
const int mod=1e9+;
ll f[N][N];
ll tmp[N];
ll jie[+],inv[+];
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
int n,k;
int ch[N][],sz[N],fa[N],h[N];
int sta[N],top;
int a[N];
int build(){
top=;
int las=;
for(reg i=;i<=n;++i){
las=;
while(top&&a[i]<a[sta[top]]){
las=sta[top];
--top;
if(top&&a[sta[top]]>a[i]) ch[sta[top]][]=las,fa[las]=sta[top];
else ch[i][]=las,fa[las]=i;
}
sta[++top]=i;
}
while(top>) ch[sta[top-]][]=sta[top],fa[sta[top]]=sta[top-],--top;
return sta[];
}
int C(int n,int m){
if(n<||m<||n<m) return ;
return (ll)jie[n]*inv[m]%mod*inv[n-m]%mod;
}
void dfs(int x){
// cout<<" x ff "<<x<<" "<<ff<<endl;
f[x][]=;
if(!x) return;
sz[x]=;
dfs(ch[x][]);dfs(ch[x][]);
sz[x]+=sz[ch[x][]]+sz[ch[x][]];
h[x]=a[x]-a[fa[x]];
f[x][]=;
for(reg s=;s<=;++s){
if(!ch[x][s]) continue;
int y=ch[x][s];
for(reg j=k;j>=;--j){
for(reg t=;t<=j;++t){
f[x][j]=(f[x][j]+f[x][j-t]*f[y][t])%mod;
}
}
}
for(reg i=k;i>=;--i){
for(reg j=;j<=min(min(i,sz[x]),h[x]);++j){
f[x][i]=(f[x][i]+f[x][i-j]*C(h[x],j)%mod*C(sz[x]-(i-j),j)%mod*jie[j]%mod)%mod;
}
}
}
int main(){
rd(n);rd(k);
int m=;
for(reg i=;i<=n;++i) rd(a[i]),m=max(m,a[i]);
m=max(m,max(n,k));
jie[]=;
for(reg i=;i<=m;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[m]=qm(jie[m],mod-);
for(reg i=m-;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod; int rt=build();
// cout<<" rt "<<rt<<endl;
f[][]=;
dfs(rt);
printf("%lld",f[rt][k]);
return ;
} }
signed main(){
// freopen("data.in","r",stdin);
// freopen("my.out","w",stdout);
Miracle::main();
return ;
}

总结:
建出笛卡尔树后有优秀的子问题性质

当前矩形的填法可以归为:先找到几行几列变成子正方形,L行L列的正方形的填法就是L!

bzoj2616: SPOJ PERIODNI——笛卡尔树+DP的更多相关文章

  1. 【BZOJ2616】SPOJ PERIODNI 笛卡尔树+树形DP

    [BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output ...

  2. BZOJ.2616.SPOJ PERIODNI(笛卡尔树 树形DP)

    BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. ...

  3. bzoj 2616 SPOJ PERIODNI——笛卡尔树+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里 ...

  4. BZOJ2616 SPOJ PERIODNI(笛卡尔树 + DP)

    题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高 ...

  5. 洛谷 P5044 - [IOI2018] meetings 会议(笛卡尔树+DP+线段树)

    洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) ...

  6. TopCoder 14084 BearPermutations2【笛卡尔树+dp】

    传送:https://vjudge.net/problem/TopCoder-14084 只是利用了笛卡尔树的性质,设f[i][j]为区间[i,j]的贡献,然后枚举中间最大的点k来转移,首先是两侧小区 ...

  7. BZOJ2616 SPOJ PERIODNI(笛卡尔树+树形dp)

    考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是 ...

  8. [BZOJ2616]SPOJ PERIODNI 树形dp+组合数+逆元

    2616: SPOJ PERIODNI Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 128  Solved: 48[Submit][Status][ ...

  9. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

随机推荐

  1. metasploit-smb扫描获取系统信息

    1.msfconsle 2.use auxiliary/scanner/smb/smb_version 3. msf auxiliary(smb_version) > set RHOSTS 17 ...

  2. 设计模式 笔记 单例模式 Singleton

    //---------------------------15/04/09---------------------------- //Singleton 单例模式-----对象创建型模式 /* 1: ...

  3. Jq_浏览器兼容性及其浏览器版本

    JQuery 中用 方法 jQuery.browser 来判断浏览器,返回值可以为: safari opera msie mozilla. 当然有时候我们还需要区分版本 这就要用到 jQuery.br ...

  4. 4星|《流量池》:Luckin Coffee营销操盘手经验谈

    流量池:“急功近利”的流量布局.营销转化 作者是一线营销操盘手,全书是作者的经验总结,这样的作者在营销类图书中比较罕见,因此这本书非常有价值. 全书是写给巨头之外的企业营销人员看的,这样的企业的流量来 ...

  5. dokuwiki工具栏添加换行回车快捷键与按钮

    需求 dokuwiki的语法要求以 \\ 为换行符(\\后面必须有1个空格).编辑器有快捷键.快捷键说明如下.https://www.dokuwiki.org/start?id=zh-tw:acces ...

  6. DRF02

    1. 视图 Django REST framwork 提供的视图的主要作用: 控制序列化器的执行(检验.保存.转换数据) 控制数据库查询的执行 1.1. 请求与响应 1.1.1 Request RES ...

  7. PAT甲题题解-1053. Path of Equal Weight (30)-dfs

    由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排 ...

  8. 《Linux内核设计与实现》第四周读书笔记——第五章

    <Linux内核设计与实现>第四周读书笔记--第五章 20135301张忻 估算学习时间:共1.5小时 读书:1.0 代码:0 作业:0 博客:0.5 实际学习时间:共2.0小时 读书:1 ...

  9. 重温jsp③

    Jsp详细   九大内置对象 Out jsp的输出流,用来向客户端响应 page 当前jsp对象!他的引用类型是object,即真身中有如下代码:object page=this: Session h ...

  10. 四则运算APP最后阶段

    四则运算APP最后阶段 [开发环境]:eclipse [开发项目]:小学生四则运算APP [开发人员]:郑胜斌 http://www.cnblogs.com/zsb1/ 孔德颖 http://www. ...