【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)
【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)
题面
题解
直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n\)列的,每个数和前面\(n\)个数的最大值,最小值同理,就做完了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a,b,n,ans=2e9;
int g[MAX][MAX];
int s[2][MAX][MAX];
int mx[MAX][MAX];
int Q[MAX],h,t;
void get(int p)
{
for(int i=1;i<=a;++i)
{
h=1;t=0;
for(int j=1;j<=b;++j)
{
while(h<=t&&j-Q[h]>=n)++h;
while(h<=t&&g[i][Q[t]]<g[i][j])--t;
Q[++t]=j;mx[i][j]=g[i][Q[h]];
}
}
for(int j=n;j<=b;++j)
{
h=1;t=0;
for(int i=1;i<=a;++i)
{
while(h<=t&&i-Q[h]>=n)++h;
while(h<=t&&mx[Q[t]][j]<mx[i][j])--t;
Q[++t]=i;s[p][i][j]=mx[Q[h]][j];
}
}
}
int main()
{
a=read();b=read();n=read();
for(int i=1;i<=a;++i)
for(int j=1;j<=b;++j)
g[i][j]=read();
get(0);
for(int i=1;i<=a;++i)
for(int j=1;j<=b;++j)
g[i][j]=-g[i][j];
get(1);
for(int i=n;i<=a;++i)
for(int j=n;j<=b;++j)
ans=min(ans,s[0][i][j]+s[1][i][j]);
printf("%d\n",ans);
return 0;
}
【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)的更多相关文章
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- bzoj1047/luogu2216 理想的正方形 (单调队列)
开b组单调队列,分别维护此时某一列中的最大/最小值 然后我每次把它们的头取出来,塞到维护行的单调队列里,就是n*n的最大/最小值 #include<bits/stdc++.h> #defi ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- [HAOI2007]理想的正方形 单调队列 暴力
Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; #d ...
随机推荐
- 判断库位是否参与MRP运算
表 T001L 字段DISKZ (库存地点MRP标识)为空,参与MRP运算,为1不参与.
- Android开发——RecyclerView特性以及基本使用方法(一)
)关于点击事件,没有像ListView那样现成的API,但是自己封装起来也不难,而且我们使用ListView时,如果item中有可点击组件,那么点击事件的冲突也是一个问题,而在RecyclerView ...
- EZ 2018 02 28 NOIP2018 模拟赛(二)
我TM的终于改完了(其实都是SB题) 题目链接:http://211.140.156.254:2333/contest/53 T1送分,T2前40%送分,还有骗分机制在里面,T3暴力50 所以200应 ...
- tkinter 弹出窗口 传值回到 主窗口
有些时候,我们需要使用弹出窗口,对程序的运行参数进行设置.有两种选择 一.标准窗口 如果只对一个参数进行设置(或者说从弹出窗口取回一个值),那么可以使用simpledialog,导入方法: from ...
- libgdx学习记录17——照相机Camera
照相机在libgdx中的地位举足轻重,贯穿于整个游戏开发过程的始终.一般我们都通过Stage封装而间接使用Camera,同时我们也可以单独使用Camera以完成背景的移动.元素的放大.旋转等操作. C ...
- BigDecimal工具类
package config_service.slowcity; import java.math.BigDecimal; public class ConfigServerApp { /* * 小数 ...
- gulp.src()内部实现探究
写在前面 本来是想写个如何编写gulp插件的科普文的,突然探究欲又发作了,于是就有了这篇东西...翻了下源码看了下gulp.src()的实现,不禁由衷感慨:肿么这么复杂... 进入正题 首先我们看下g ...
- Kaggle: Google Analytics Customer Revenue Prediction EDA
前言 内容提要 本文为Kaggle竞赛 Google Analytics Customer Revenue Prediction 的探索性分析 题目要求根据历史顾客访问GStore的数据,预测其中部分 ...
- RabbitMq基础教程之基本概念
RabbitMq基础教程之基本概念 RabbitMQ是一个消息队列,和Kafka以及阿里的ActiveMQ从属性来讲,干的都是一回事.消息队列的主要目的实现消息的生产者和消费者之间的解耦,支持多应用之 ...
- 关于InfiniBand几个基本知识点解释
文章出处: https://blog.csdn.net/BtB5e6Nsu1g511Eg5XEg/article/details/83629279 公众号 https://blog.csdn.net/ ...