【BZOJ1797】[AHOI2009]最小割(网络流)
【BZOJ1797】[AHOI2009]最小割(网络流)
题面
题解
最小割的判定问题,这里就当做记结论吧。(源自\(lun\)的课件)
我们先跑一遍最小割,求出残量网络。然后把所有还有流量的边拿出来跑\(Tarjan\)缩\(SCC\)。
如果一条满流边的两个端点不在同一个\(SCC\)中则这条边可能存在于最小割中。
证明:考虑如果减少一条边的容量之后,最小割变小了,证明这条边可能存在于最小割之中。
那么反过来,如果\((u,v)\)在同一个\(SCC\)中,我们把\(u\rightarrow v\)这条边的容量减小\(d\),那么我们把这个环上的所有边的容量都减少\(d\),仍然满足流量平衡,意味着最大流即最小割不变。反之最大流即最小割改变,那么这条边可能存在于最小割中。如果一条满流边\(u\rightarrow v\)的端点满足\(u\)和\(S\)在同一个\(SCC\),\(v\)和\(T\)在同一个\(SCC\),那么这条边必定在最小割中。
证明:增加一条边的容量,如果最小割增加,意味着这条边必定在最小割中。因为\(u\rightarrow\)是满流的边,所以沿反边\(u\)可达\(S\),\(T\)可达\(v\) 。如果\(S,u\)在同一个\(SCC\),\(T,v\)在同一个\(SCC\)中,说明\(S\)到\(u\)上还有增广路,\(v\)到\(T\)上还有增广路,那么\(u\rightarrow v\)的流量增加最小割也会增加,此时\(u\rightarrow v\)必定在最小割中。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 5000
#define MAXL 60060
#define inf 1000000000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAXL<<1];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int n,m,S,T,level[MAX],cur[MAX];
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
queue<int> Q;Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v,d;
if(e[i].w&&level[v]==level[u]+1)
{
d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
if(!flow)break;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
memcpy(cur,h,sizeof(h));
ret+=dfs(S,inf);
}
return ret;
}
int dfn[MAX],low[MAX],G[MAX],gr,tim,St[MAX],top;
bool ins[MAX];
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=true;
for(int i=h[u];i;i=e[i].next)
{
if(!e[i].w)continue;
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++gr;int v;
do{v=St[top--];G[v]=gr;ins[v]=false;}while(u!=v);
}
}
int main()
{
n=read();m=read();S=read();T=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);
}
Dinic();
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=2;i<cnt;i+=2)
if(e[i].w)puts("0 0");
else
{
if(G[e[i].v]^G[e[i^1].v])printf("1 ");
else printf("0 ");
if(G[e[i].v]==G[T]&&G[e[i^1].v]==G[S])puts("1");
else puts("0");
}
return 0;
}
【BZOJ1797】[AHOI2009]最小割(网络流)的更多相关文章
- BZOJ1797:[AHOI2009]最小割(最小割)
Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...
- [BZOJ1797][AHOI2009]最小割Mincut
bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...
- P4126 [AHOI2009]最小割(网络流+tarjan)
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...
- P4126 [AHOI2009]最小割
题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...
- 洛谷P4126 [AHOI2009]最小割
题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...
- 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan
题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- AHOI2009最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1072 Solved: 446[Submit] ...
- 洛谷$P4126\ [AHOI2009]$最小割 图论
正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...
随机推荐
- 大数据入门第十九天——推荐系统与mahout(一)入门与概述
一.推荐系统概述 为了解决信息过载和用户无明确需求的问题,找到用户感兴趣的物品,才有了个性化推荐系统.其实,解决信息过载的问题,代表性的解决方案是分类目录和搜索引擎,如hao123,电商首页的分类目录 ...
- 编译安装php时遇到virtual memory exhausted: Cannot allocate memory
有时候用vps建站时需要通过编译的方式来安装主机控制面板.对于大内存的VPS来说一般问题不大,但是对于小内存,比如512MB内存的godaddy VPS来说,很有可能会出现问题,因为编译过程是一个内存 ...
- Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI
目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...
- falsk之文件上传
在使用flask定义路由完成文件上传时,定义upload视图函数 from flask import Flask, render_template from werkzeug.utils import ...
- JavaScript快速入门-DOM对象
一.概述 1.什么是 DOM? DOM 是 W3C(万维网联盟)的标准.DOM 定义了访问 HTML 和 XML 文档的标准: "W3C 文档对象模型(DOM)是中立于平台和语言的接口,它允 ...
- REST-framework快速构建API--频率
前面已经了解了API的认证和授权.认证,是对资源访问者的第一道门,必须有钥匙,你才能进来拿我的资源:授权,是对资源访问者的第二道门,虽然你进来了,但是你可以拿走什么资源,还是我说了算,就是授权. 当然 ...
- 使用Windows Server 2003搭建一个asp+access网站
鼠标右键->新建->网站->下一步->描述(随便给一个,这里我以test为例) ->下一步->下一步->输入主目录的路径,默认路径下是C:\Inetpub\w ...
- numpy 初识(三)
基本运算 exp: e sqrt:开放 floor:向下取整 ravel:矩阵拉成一个向 T:转置(行和列变换) 改变形状: resize: 更改其形状(返回值为None)a.resize(6,2) ...
- arduino驱动安装
方法一:使用官方提供的一键安装程序安装 打开Arduino在你电脑上的位置如果你的电脑是32位系统,就运行dpinst-x86.exe如果是64位系统,就运行dpinst-amd64.exe然后在弹出 ...
- Beta阶段展示博客
Beta阶段展示博客 1. 团队成员的简介和个人博客地址 刘畅 博客园ID:森高Slontia 身份:PM 个人介绍: 弹丸粉 || 小说创作爱好者 || 撸猫狂魔(x || 生命的价值在于创造 (我 ...