【BZOJ1797】[AHOI2009]最小割(网络流)
【BZOJ1797】[AHOI2009]最小割(网络流)
题面
题解
最小割的判定问题,这里就当做记结论吧。(源自\(lun\)的课件)
我们先跑一遍最小割,求出残量网络。然后把所有还有流量的边拿出来跑\(Tarjan\)缩\(SCC\)。
如果一条满流边的两个端点不在同一个\(SCC\)中则这条边可能存在于最小割中。
证明:考虑如果减少一条边的容量之后,最小割变小了,证明这条边可能存在于最小割之中。
那么反过来,如果\((u,v)\)在同一个\(SCC\)中,我们把\(u\rightarrow v\)这条边的容量减小\(d\),那么我们把这个环上的所有边的容量都减少\(d\),仍然满足流量平衡,意味着最大流即最小割不变。反之最大流即最小割改变,那么这条边可能存在于最小割中。如果一条满流边\(u\rightarrow v\)的端点满足\(u\)和\(S\)在同一个\(SCC\),\(v\)和\(T\)在同一个\(SCC\),那么这条边必定在最小割中。
证明:增加一条边的容量,如果最小割增加,意味着这条边必定在最小割中。因为\(u\rightarrow\)是满流的边,所以沿反边\(u\)可达\(S\),\(T\)可达\(v\) 。如果\(S,u\)在同一个\(SCC\),\(T,v\)在同一个\(SCC\)中,说明\(S\)到\(u\)上还有增广路,\(v\)到\(T\)上还有增广路,那么\(u\rightarrow v\)的流量增加最小割也会增加,此时\(u\rightarrow v\)必定在最小割中。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 5000
#define MAXL 60060
#define inf 1000000000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAXL<<1];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int n,m,S,T,level[MAX],cur[MAX];
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
queue<int> Q;Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v,d;
if(e[i].w&&level[v]==level[u]+1)
{
d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
if(!flow)break;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
memcpy(cur,h,sizeof(h));
ret+=dfs(S,inf);
}
return ret;
}
int dfn[MAX],low[MAX],G[MAX],gr,tim,St[MAX],top;
bool ins[MAX];
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=true;
for(int i=h[u];i;i=e[i].next)
{
if(!e[i].w)continue;
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++gr;int v;
do{v=St[top--];G[v]=gr;ins[v]=false;}while(u!=v);
}
}
int main()
{
n=read();m=read();S=read();T=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);
}
Dinic();
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=2;i<cnt;i+=2)
if(e[i].w)puts("0 0");
else
{
if(G[e[i].v]^G[e[i^1].v])printf("1 ");
else printf("0 ");
if(G[e[i].v]==G[T]&&G[e[i^1].v]==G[S])puts("1");
else puts("0");
}
return 0;
}
【BZOJ1797】[AHOI2009]最小割(网络流)的更多相关文章
- BZOJ1797:[AHOI2009]最小割(最小割)
Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...
- [BZOJ1797][AHOI2009]最小割Mincut
bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...
- P4126 [AHOI2009]最小割(网络流+tarjan)
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...
- P4126 [AHOI2009]最小割
题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...
- 洛谷P4126 [AHOI2009]最小割
题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...
- 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan
题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- AHOI2009最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1072 Solved: 446[Submit] ...
- 洛谷$P4126\ [AHOI2009]$最小割 图论
正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...
随机推荐
- Docker中查看Mysql数据库中的各环境参数
通过官方的文档可以看到运行MySQL容器的命令是: docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mypwd -d mysql:tag 如:d ...
- 【转】Google Chrome中顺时针/逆时针滚动圆的含义
当浏览器处于以下状态时,看起来好像圆圈是逆时针滚动的: 解析主机名 连接服务器 等待响应(从服务器发送第一个字节之前?) 当浏览器处于以下状态时,圆圈似乎顺时针滚动: 加载页面或引用的资源 在标签页中 ...
- win10触摸板手势
尴尬的发现,今天才开始使用win10的手势,之前都是单指操作/笑哭 参考:http://www.sohu.com/a/63678223_230077 https://support.microsoft ...
- 20155318 《网络攻防》Exp5 MSF基础应用
20155318 <网络攻防>Exp5 MSF基础应用 基础问题 用自己的话解释什么是exploit,payload,encode? exploit就相当于是载具,将真正要负责攻击的代码传 ...
- 利用RMAN转移裸设备到文件系统
本文只是为了个人备忘. 参考eagyle的:http://www.eygle.com/archives/2005/12/oracle_howto_move_datafile_raw.html 我首先挂 ...
- libgdx学习记录10——Particle粒子
粒子对制作画面特效很有用,可以使用Particle Editor进行自行编辑粒子效果,跟图片一起生成.p粒子文件,然后导入到程序中使用. 本文所用的粒子效果是基于其自带的demo的. 实例: pack ...
- 纯 CSS 利用 label + input 实现选项卡
clip 属性 用于剪裁绝对定位元素. .class { position:absolute; clip:rect(0px,60px,200px,0px); } scroll-behavior: sm ...
- 一个Python开源项目-腾讯哈勃沙箱源码剖析(上)
前言 2019年来了,2020年还会远吗? 请把下一年的年终奖发一下,谢谢... 回顾逝去的2018年,最大的改变是从一名学生变成了一位工作者,不敢说自己多么的职业化,但是正在努力往那个方向走. 以前 ...
- jstree API
https://www.jstree.com/ drag & drop support(拖放) keyboard navigation(键盘导航) inline edit, create ...
- 【Alpha】第七次Scrum meeting
今日任务一览: 姓名 今日完成任务 所耗时间 刘乾 今日没有做很多事...一天都在沟通细化需求与画电路图 2 鲁聃 生成物理报告实验页面的生成 Issue链接:https://github.com/b ...