Redis实现分布式锁原理与实现分析
一、关于分布式锁
关于分布式锁,可能绝大部分人都会或多或少涉及到。
我举二个例子:
场景一:从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能在某一个时刻会有二笔一样的单子同时到达系统后台。
场景二:在App中下订单的时候,点击确认之后,没反应,就又点击了几次。在这种情况下,如果无法保证该接口的幂等性,那么将会出现重复下单问题。
在接收消息的时候,消息推送重复。如果处理消息的接口无法保证幂等,那么重复消费消息产生的影响可能会非常大。
类似这种场景,我们有很多种方法,可以使用幂等操作,也可以使用锁的操作。
我们先来解释一下什么是幂等操作:
所谓幂等,简单地说,就是对接口的多次调用所产生的结果和调用一次是一致的。扩展一下,这里的接口,可以理解为对外发布的HTTP接口或者Thrift接口,也可以是接收消息的内部接口,甚至是一个内部方法或操作。
在分布式环境中,网络环境更加复杂,
因前端操作抖动、网络故障、消息重复、响应速度慢等原因,对接口的重复调用概率会比集中式环境下更大,尤其是重复消息在分布式环境中很难避免。Tyler Treat也在《You Cannot Have Exactly-Once Delivery》一文中提到:
Within the context of a distributed system, you cannot have exactly-once message delivery.
分布式环境中,有些接口是天然保证幂等性的,如查询操作。有些对数据的修改是一个常量,并且无其他记录和操作,那也可以说是具有幂等性的。其他情况下,所有涉及对数据的修改、状态的变更就都有必要防止重复性操作的发生。通过间接的实现接口的幂等性来防止重复操作所带来的影响,成为了一种有效的解决方案。
于是我们根据以上内容就可以讲一下使用分布式锁的方法有哪些。
1、使用数据库乐观锁,包括主键防重,版本号控制。但是这两种方法各有利弊。
使用主键冲突的策略进行防重,在并发量非常高的情况下对数据库性能会有影响,尤其是应用数据表和主键冲突表在一个库的时候,表现更加明显。其实针对是否会对数据库性能产生影响这个话题,我也和一些专业的DBA同学讨论过,普遍认可的是在MySQL数据库中采用主键冲突防重,在大并发情况下有可能会造成锁表现象,比较好的办法是在程序中生产主键进行防重。
使用版本号策略
这个策略源于mysql的mvcc机制,使用这个策略其实本身没有什么问题,唯一的问题就是对数据表侵入较大,我们要为每个表设计一个版本号字段,然后写一条判断sql每次进行判断。
2、Zookeeper防重策略
利用ZK确实是一个不错的方案,流程如下:
以前的版本中普遍传言说它的性能不好,但是后续的版本性能得到了较大提高,经过系统压测还是能够支撑较大并发量的,经过压测三台Zookeeper能搞住20000tps。
用zookeeper的优点大概有:高可用、公平锁、心跳保持锁。
3、Redis防重策略
关于主从Redis方案最简单的实现流程如下:
表面来看,这个方案似乎很管用,但是这里存在一个问题:在我们的系统架构里存在一个单点故障,如果Redis的master节点宕机了怎么办呢?有人可能会说:加一个slave节点!在master宕机时用slave就行了!但是其实这个方案明显是不可行的,因为这种方案无法保证第1个安全互斥属性,因为Redis的复制是异步的。 总的来说,这个方案里有一个明显的竞争条件(race condition),举例来说:
- 客户端A在master节点拿到了锁。
- master节点在把A创建的key写入slave之前宕机了。
- slave变成了master节点
- B也得到了和A还持有的相同的锁(因为原来的slave里还没有A持有锁的信息)
于是我就在想,我该如何做才能让Redis在分布式锁这一块能够达到高可用呢?
于是基于Tedis的思想(http://www.oschina.net/p/tedis) 我自己写了一套针对分布式锁的双写Redis框架。
二、双写Redis的架构图
说明:
组件名叫YeeRedisGroup,基本服务主要有四个,当数据到来的时候,会分别插入二个Redis服务,这二个Redis服务采用的是异地双活的方案,当其中一个Redis服务挂了以后,会将这个Redis服务从可用队列中摘除,放入重试队列中,另一个Redis则会继续使用。同样读取Redis的时候只会从可用队列中读取第一个Redis服务继续读取。
三、双写Redis的类图结构
说明:这个图其实没什么可说的,大家自己看就可以了。
四、双写Redis的时序图
说明:这个图主要就是说明了整体系统交互流程是怎样的。
五、故障容错流程图
六、故障重试流程图
七、主动通知与主动查询流程图
八、Redis可用队列与重试队列结构图
Redis实现分布式锁原理与实现分析的更多相关文章
- 利用多写Redis实现分布式锁原理与实现分析(转)
利用多写Redis实现分布式锁原理与实现分析 一.关于分布式锁 关于分布式锁,可能绝大部分人都会或多或少涉及到. 我举二个例子:场景一:从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能 ...
- 基于Redis的分布式锁和Redlock算法
1 前言 前面写了4篇Redis底层实现和工程架构相关文章,感兴趣的读者可以回顾一下: Redis面试热点之底层实现篇-1 Redis面试热点之底层实现篇-2 Redis面试热点之工程架构篇-1 Re ...
- 身为一枚优秀的程序员必备的基于Redis的分布式锁和Redlock算法
1 前言 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redi ...
- Redis分布式锁原理
1. Redis分布式锁原理 1.1. Redisson 现在最流行的redis分布式锁就是Redisson了,来看看它的底层原理就了解redis是如何使用分布式锁的了 1.2. 原理分析 分布式锁要 ...
- Redisson 实现分布式锁原理分析
Redisson 实现分布式锁原理分析 写在前面 在了解分布式锁具体实现方案之前,我们应该先思考一下使用分布式锁必须要考虑的一些问题. 互斥性:在任意时刻,只能有一个进程持有锁. 防死锁:即使有 ...
- 关于分布式锁原理的一些学习与思考-redis分布式锁,zookeeper分布式锁
首先分布式锁和我们平常讲到的锁原理基本一样,目的就是确保,在多个线程并发时,只有一个线程在同一刻操作这个业务或者说方法.变量. 在一个进程中,也就是一个jvm 或者说应用中,我们很容易去处理控制,在j ...
- 基于redis的分布式锁的分析与实践
前言:在分布式环境中,我们经常使用锁来进行并发控制,锁可分为乐观锁和悲观锁,基于数据库版本戳的实现是乐观锁,基于redis或zookeeper的实现可认为是悲观锁了.乐观锁和悲观锁最根本的区别在于 ...
- 基于Redis的分布式锁安全性分析-转
基于Redis的分布式锁到底安全吗(上)? 2017-02-11 网上有关Redis分布式锁的文章可谓多如牛毛了,不信的话你可以拿关键词“Redis 分布式锁”随便到哪个搜索引擎上去搜索一下就知道了 ...
- redis分布式锁原理与实现
分布式锁原理 分布式锁,是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候, ...
随机推荐
- MySQL体系架构
MySQL体系架构 学习一门数据库系统首先得了解它的架构,明白它的架构原理对于后期的分析问题和性能调优都有很大的帮助,接下来就通过分析架构图来认识它. 数据库:物理操作系统文件或者其它文件的集合,在m ...
- 基于Java+SparkStreaming整合kafka编程
一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1 ...
- linux 添加用户并赋予root权限
1.添加用户,首先用adduser命令添加一个普通用户,命令如下: #adduser tommy //添加一个名为tommy的用户#passwd tommy //修改密码Changing pass ...
- 测试ik分词效果
POST: http://192.168.1.12:9200/ddycdr/_analyze?analyzer=ik_max_word body: {"text":& ...
- 前端js 省市联动
代码下载地址 <!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- 研究js特效巩固JavaScript知识
400多个JavaScript特效大全,包含全部源代码和详细代码说明,不可多得 JavaScript实现可以完全自由拖拽的效果,带三个范例 http://www.sharejs.com/show ...
- pytest.4.Fixture
From: http://www.testclass.net/pytest/fixture/ 我们可以简单的把Fixture理解为准备测试数据和初始化测试对象的阶段. 一般我们对测试数据和测试对象的管 ...
- STL基础--算法(不修改数据的算法)
不修改数据的算法 count, min and max, compare, linear search, attribute // 算法中Lambda函数很常用: num = count_if(vec ...
- 一篇对OAuth2.0开发实例的介绍
今天看到了博友对SSO的文章,SSO单点登录的讲解突然想写一篇关于OAuth2.0用户授权的介绍. 应用场景:在APP或者网页接入一些第三方应用时,时长会需要用户登录另一个合作平台,比如QQ,微博,微 ...
- API网关之Kong网关简介
1. Kong简介 那么,Kong是一个什么东东呢?它是一个开源的API网关,或者你可以认为它是一个针对API的一个管理工具.你可以在那些上游service之上,额外去实现一些功能.Kong是开源的, ...