Solution

输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量。

要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量。

之后的点双联通分量构成一棵树。 树上的节点有两种情况

1: 仅有一条边(仅有 一个割点 在内部)—— 相当与叶子节点, 把它与父亲节点相连的割点割去后,必须在里面设一个逃生出口

2: 大于一条边(有大于一个割点在内部 )——割去其中一个割点时, 还可以通过另一个割点到达逃生出口, 所以不用设置。

所以我们要求的就是在所有 仅含一个割点的 点双联通分量 内设置 一个 逃生出口, 并根据 乘法原理 计算方案数。

特别的: 当整个图是一个 点双连通图时, 设置任意 两个 逃生出口即可。

Code

 #include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define rd read()
#define R register
#define ll long long
using namespace std; const int N = 1e3; int head[N], tot;
int dfn[N], low[N], col_num;//col_num为点双联通分量个数
int n, m, mark[N], cut[N], rt, maxn, cut_num[N];//cut_num为点双联通分量内的割点数
int st[N], tp, cnt;
ll ans1, ans2; vector<int> q[N];
struct edge {
int nxt, to, fr;
}e[N << ]; int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} void add(int u, int v) {
e[++tot].to = v;
e[tot].nxt = head[u];
e[tot].fr = u;
head[u] = tot;
} void tarjan(int u) {
dfn[u] = low[u] = ++cnt;
st[++tp] = u;
int flag = ;
for(R int i = head[u]; i; i = e[i].nxt) {
R int nt = e[i].to;
if(!dfn[nt]) {
tarjan(nt);
low[u] = min(low[u], low[nt]);
if(low[nt] >= dfn[u]) {
col_num++;
flag ++;
if(flag > || u != rt)
cut[u] = ;
for(; tp;) {
int z = st[tp--];
q[col_num].push_back(z);
if(z == nt) break;
}
q[col_num].push_back(u);
}
} else low[u] = min(low[u], dfn[nt]);
}
} void init() {
for(int i = ; i <= col_num; ++i)
q[i].clear();
ans1 = maxn = col_num = cnt = tot = ;
ans2 = ;
memset(dfn, , sizeof(dfn));
memset(mark, , sizeof(mark));
memset(cut, , sizeof(cut));
memset(low, , sizeof(low));
memset(head, , sizeof(head));
memset(cut_num, , sizeof(cut_num));
} int main()
{
for(int T = ; ; T++) {
n = rd;
if(!n) return ;
init();
for(int i = ; i <= n; ++i) {
int u = rd, v = rd;
add(u, v); add(v, u);
mark[u] = mark[v] = ;
maxn = max(maxn, u);
maxn = max(maxn, v);
}
for(int i = ; i <= maxn; ++i)
if(!dfn[i] && mark[i]) tarjan(rt = i);
for(int i = ; i <= col_num; ++i)
for(int j = , len = q[i].size(); j < len; ++j) {
if(cut[q[i][j]]) cut_num[i]++;
}
for(int i = ; i <= col_num; ++i)
if(cut_num[i] == ) ans1++, ans2 = ans2 * (int)(q[i].size() - );
printf("Case %d: %lld %lld\n", T, ans1 ? ans1 : , ans1 ? ans2 : (int)(q[].size() - ) * q[].size()/ );
}
}

BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点的更多相关文章

  1. P3225 [HNOI2012]矿场搭建 tarjan割点

    这个题需要发现一点规律,就是先按割点求块,然后求每个联通块中有几个割点,假如没有割点,则需要建两个出口,如果一个割点,则需要建一个出口,2个以上不用建. 题干: 题目描述 煤矿工地可以看成是由隧道连接 ...

  2. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

  3. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  4. 【BZOJ-2730】矿场搭建 Tarjan 双连通分量

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 751[Submit][Statu ...

  5. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  6. BZOJ 2730:[HNOI2012]矿场搭建(割点+连通块)

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

  7. [HNOI2012]矿场搭建(割点)

    [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出 ...

  8. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  9. [BZOJ2730][HNOI2012]矿场搭建(求割点)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...

随机推荐

  1. python基础学习Day17 面向对象的三大特性之继承、类与对象名称空间小试

    一.课前回顾 类:具有相同属性和方法的一类事物 实例化:类名() 过程: 开辟了一块内存空间 执行init方法 封装属性 自动的把self返回给实例化对象的地方 对象:实例 一个实实在在存在的实体 组 ...

  2. CSS Media Query

    [CSS Media Query] CSS Media Queries are a feature in CSS3 which allows you to specify when certain C ...

  3. python pbr 打包

    在之前学习stevedore时,在setup.py中使用setuptools打包发布了代码,然后调用代码中的实例化对象.参考我的文章 https://www.cnblogs.com/CaesarLin ...

  4. linux下mysql升级

    最近漏洞扫描,扫描出了数据库存在中高危漏洞,于是迫切需要进行数据库升级.上网查了各种资料,说法很多,也到自己虚拟机上试了好多方法,终于倒腾出来,做下小总结记录一下. 升级操作: 1.到mysql官网h ...

  5. 命令行执行jenkins,构建job(可传递参数)

    背景| 组内做UI测试,需要每天晚上执行一遍jenkins任务,jenkins任务本身是参数化构建的.但是因为jenkins本身的定时执行没有办法指定特殊的参数,所以考虑使用命令行方式启动jenkin ...

  6. defer和async的详细区别

    看过javascript高级程序设计的人,在javascript高级程序设计里,应该看到了介绍了有关defer和async的区别,可是比较浅显,而且也说得不是很清楚.下面我们来通过图片来详细了解下df ...

  7. POJ 1684 Corn Fields(状压dp)

    描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ ...

  8. 牛客网 Wannafly挑战赛12 删除子串(线性dp)

    题目描述 给你一个长度为n且由a和b组成的字符串,你可以删除其中任意的部分(可以不删),使得删除后的子串“变化”次数小于等于m次且最长. 变化:如果a[i]!=a[i+1]则为一次变化.(且新的字符串 ...

  9. pa sslvpn使用手册

    1.浏览器输入https://x.x.x.x 根据电脑操作系统及位数选择下载 2.安装 直接“下一步”,到  输入IP地址x.x.x.x 点击连接会有证书错误提示 此时点击显示证书→本地计算机→安装到 ...

  10. Python: subprocess.Popen()不支持unicode问题解决

    起源: 所下载视频,有音视频分离者,需要合并起来,采用python之subprocess.Popen()调用ffmpeg实现.python版本为2.7.13,而音视频文件路径,有unicode字符者, ...