一本通1642【例 2】Fibonacci 第 n 项
1642: 【例 2】Fibonacci 第 n 项



sol:挺模板的吧,经典题吧qaq
(1)
1 0 * 1 1 = 1 1
1 0
(2)
1 1 * 1 1 = 2 1
1 0
(3)
2 1 * 1 1 = 3 2
1 0
所以第n项就是1 0 * (1,1)n
(1,0)
用快速幂优化就是矩阵快速幂了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
/*
1 0 1 1
1 0
*/
ll n,Mod;
ll a[][],b[][],ans[][],c[][];
inline void Ad(ll &X,ll Y)
{
X=X+Y;
X-=(X>=Mod)?Mod:;
return;
}
int main()
{
int i,j,k;
n=read()-; R(Mod);
a[][]=a[][]=a[][]=; a[][]=;
ans[][]=ans[][]=; ans[][]=ans[][]=;
while(n)
{
if(n&)
{
memset(c,,sizeof c);
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
for(k=;k<=;k++) Ad(c[i][j],ans[i][k]*a[k][j]%Mod);
}
}
memmove(ans,c,sizeof ans);
}
memset(c,,sizeof c);
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
for(k=;k<=;k++) Ad(c[i][j],a[i][k]*a[k][j]%Mod);
}
}
memmove(a,c,sizeof a);
n>>=;
}
b[][]=; b[][]=;
memset(c,,sizeof c);
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
for(k=;k<=;k++) Ad(c[i][j],ans[i][k]*b[k][j]);
}
}
memmove(b,c,sizeof b);
Wl(b[][]);
return ;
}
/*
input
5 1000
output
5
*/
一本通1642【例 2】Fibonacci 第 n 项的更多相关文章
- 1643【例 3】Fibonacci 前 n 项和
1643:[例 3]Fibonacci 前 n 项和 时间限制: 1000 ms 内存限制: 524288 KB sol:这题应该挺水的吧,就像个板子一样 1 0 01 1 0 * ...
- k阶斐波那契数列fibonacci第n项求值
已知K阶斐波那契数列定义为:f0 = 0, f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...
- Pyhton 一行代码求Fibonacci第N项
递归定义很简单,效率当然很低下,且极易超出栈空间大小. 这样做纯粹是为了体现python的语言表现力而已, 并没有任何实际意义. def fib(x): return fib(x-1) + fib(x ...
- 未能加载文件或程序集,PublicKeyToken=“**********”,或它的某一个依赖项。强名称验证失败。
就是这种错误.这种错误怎么办? 以下步骤: (以上图dll为例) 1.看项目的Debug文件夹下是否有以下三个文件 2.看项目的.csproj文件下引用的报错dll的publickeytoken和版本 ...
- loj题目总览
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
- 第5章 简单的C程序设计——循环结构程序设计
5.1 为什么需要循环控制 前面介绍了程序中常用到的顺序结构和选择结构,但是只有这两种结构是不够的,还需要用到循环结构(或称重复结构).因为在程序所处理的问题中常常遇到需要重复处理的问题. 循环结构和 ...
- 20101010 exam
目录 2018 10.10 exam 解题报告 T1:LOJ #10078 新年好 题目描述(原题来自:CQOI 2005): 输入格式: 输出格式: 样例输入: 样例输出: 数据范围与提示: 思路: ...
- C++系列作业
1.编写一个完整的程序,实现功能:向用户提问“现在正在下雨吗?”,提示用户输入Y或N.若输入为Y,显示“现在正在下雨.”:若输入为N,显示“现在没有下雨”:否则继续提问“现在正在下雨吗?” #incl ...
随机推荐
- P2962 [USACO09NOV]灯Lights
贝希和她的闺密们在她们的牛棚中玩游戏.但是天不从人愿,突然,牛棚的电源跳闸了,所有的灯都被关闭了.贝希是一个很胆小的女生,在伸手不见拇指的无尽的黑暗中,她感到惊恐,痛苦与绝望.她希望您能够帮帮她,把所 ...
- P1312 Mayan游戏
题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...
- Kubernetes哪一点最打动你?或者,它发布过的哪一项特性让你认为最厉害?
kubernates 打动我的地方应该是他解决了docker 的一个痛点,各个docker之间的通信以及集成管理.因为这跟微服务很像,微服务之间也是需要通信和统一管理.知识总是相同的,在这里就体现出来 ...
- 关于Altium Designer 提示发送错误报告解决方法
提示是这样子,,,,,, 稍微有点问题就提示,,,复制也提示,,,,移动也提示,,,,,,算是服了这个软件了.......真是忍无可忍,那就无需再忍,解决掉 以前是安装上一个虚拟的打印机就好了,,,其 ...
- odoo返写数据
#确认按钮 反写回合同页面,当前页面反写数据: def action_split_order_ht(self,cr,uid,ids,context=None): assert len(ids)==1 ...
- odoo之ERP系统
odoo大纲 第一部分:数据库postgressql 大象 第二部分:ORM(API) 第三部分:客户端 用python软件写: .py文件 包含两部分:1.自定义部分,由自己写,定义类和功能. .继 ...
- PI monitor error process-RESOURCE_NOT_FOUND-转
事务:sxi_monitor 状态:system error 类型:Request Message Mapping 错误简要:RESOURCE_NOT_FOUND 错误详细信息: <?xml v ...
- Retry模式
Retry模式能够通过重复之前失败的操作来处理那些在调用远端服务或者网络资源的时候发生的一些可以预期的临时性的错误.Retry模式可以提高应用的稳定性. 问题 应用中,负责链接其他服务的组件必须要对环 ...
- [Deep-Learning-with-Python]基于Keras的房价预测
预测房价:回归问题 回归问题预测结果为连续值,而不是离散的类别. 波士顿房价数据集 通过20世纪70年代波士顿郊区房价数据集,预测平均房价:数据集的特征包括犯罪率.税率等信息.数据集只有506条记录, ...
- 深入浅出OAuth2.0授权
一.前言 说到OAuth,先来一段百度到的比较官方的解释: OAUTH协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是OAUTH的授权不会使第三方触及到用户的帐号信 ...