Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:

  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.

Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

Idea 1. Subset sum

[1, 5, 11, 5]

containing 1: [1], sum {1}

containing 5: [5], [1, 5]   sum {5, 6}

containing 11: [11], [1, 11], [5, 11], [1, 5, 11]  {11, 12, 16, 17}

containing: 5: [5], [1, 5], [5, 5], [1, 5, 5], [11, 5], [1, 11, 5], [5, 11, 5], [1, 5, 11, 5], {5, 6, 10, 11, 16, 17, 21, 22}

Time complexity: O(2^n -1)

Space complexity: O(2^n -1)

 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
}
if(totalSum%2 != 0) {
return false;
} List<List<Integer>> endSum = new ArrayList<>();
for(int i = 0; i < nums.length; ++i) {
List<Integer> curr = new ArrayList<>();
if(nums[i] == totalSum/2) {
return true;
}
curr.add(nums[i]);
for(int j = 0; j < i; ++j) {
for(int val: endSum.get(j)) {
int currSum = val + nums[i];
if(currSum == totalSum/2) {
return true;
}
curr.add(currSum);
}
}
endSum.add(curr);
}
return false;
}
}

Idea 2: dynamic programming. Let dp[i][j] represents if the subset sum from num[0..i] could reach j,

dp[i][j] = dp[i-1][j] not picking nums[i],

    dp[i-1][j-nums[i]] picking nums[i]

Note. to initialise dp[-1][0] = 0

Time complexity: O(n*target)

Space complexity: O(n*target)

 class Solution {
private void backtrack(int[] nums, int i, boolean[][] dp, int target) {
if(i > nums.length) {
return;
} for(int j = 1; j <= target; ++j) {
dp[i][j] = dp[i-1][j];
if(j >= nums[i-1]) {
dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
}
}
backtrack(nums, i+1, dp, target);
} public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
} if(totalSum %2 != 0) {
return false;
}
int n = nums.length;
int target = totalSum/2;
boolean[][] dp = new boolean[n+1][target+1];
for(int i = 0; i <= n; ++i) {
dp[i][0] = true;
} backtrack(nums, 1, dp, target);
return dp[n][target];
}
}
 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
} if(totalSum %2 != 0) {
return false;
} int target = totalSum/2;
int m = nums.length;
boolean[][] dp = new boolean[m+1][target+1];
dp[0][0] = true; for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= target; ++j) {
dp[i][j] = dp[i-1][j];
if(j >= nums[i-1]) {
dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
}
}
} return dp[m][target];
}
}

Idea 2. dynamic programming, 二维到一维的优化,注意在二维公式中sum的循环是从小到大(从左到右),但是是前一行,转换成一维,需要用到前边的状态,所以要从右向左

dp[j] = dp[j] || dp[j-nums[i]]

dp[0] = true

Time complexity: O(n*target)

Space complexity: O(target)

 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0; for(int num: nums) {
totalSum += num;
} if(totalSum % 2 != 0) {
return false;
} int target = totalSum/2;
int n = nums.length;
boolean[] dp = new boolean[target+1];
dp[0] = true; for(int i = 0; i < n; ++i) {
for(int j = target; j >= nums[i]; --j) {
dp[j] = dp[j] || dp[j-nums[i]];
}
} return dp[target];
}
}

Partition Equal Subset Sum的更多相关文章

  1. LN : leetcode 416 Partition Equal Subset Sum

    lc 416 Partition Equal Subset Sum 416 Partition Equal Subset Sum Given a non-empty array containing ...

  2. [LeetCode] Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  3. [LeetCode] 416. Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  4. Leetcode 416. Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  5. [leetcode]416. Partition Equal Subset Sum分割数组的和相同子集

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  6. 416. Partition Equal Subset Sum

    题目: Given a non-empty array containing only positive integers, find if the array can be partitioned ...

  7. Leetcode: Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  8. [Swift]LeetCode416. 分割等和子集 | Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  9. Leetcode ——Partition Equal Subset Sum

    Question Given a non-empty array containing only positive integers, find if the array can be partiti ...

随机推荐

  1. 基于oslo_log的日志管理

    oslo_log是openstack中的日志模块,其对python logging的封装,可以快速便捷地写出我们的日志模块.官网上有许多参考示例,但实例永远是实例,其配合oslo_config模块,快 ...

  2. metasploit framework(七):密码嗅探

    run 当嗅探到流量中的用户密码信息时打印出来,目前只支持FTP,http get , pop3 还可以对抓包文件,进行密码提取,设置需要提取的文件路径 run就能提取里面的用户密码信息 查看和停掉某 ...

  3. linux 后台运行命令

    command & 关闭终端,程序会终止 nohup command & 关闭终端,程序不会终止

  4. day25 面向对象之多态和鸭子类型

    1.封装方法 如何封装:给方法名称前面加上双下划线 # ATM 的取款功能 # 1.插入银行卡 2.输入密码 3.选择取款金额 4.取款 class ATM: def __insert_card(se ...

  5. FileReader.FileWriter 执行文本复制

    //导包动作必须做,否则会出现大片错误提示 import java.io.*; class FileReaderDemo { publicstatic void main(String[] args) ...

  6. for 与 for in

    在JavaScript中提供了两种方式迭代对象: (1)for 循环: (2)for..in循环: 使用for循环进行迭代数组对象,想必大家都已经司空见惯了.但是,使用for.. in循环时,大家可要 ...

  7. PAT1020 (已知中序,后序遍历转前序遍历)

    已知后序与中序输出前序(先序):后序:3, 4, 2, 6, 5, 1(左右根)中序:3, 2, 4, 1, 6, 5(左根右) 已知一棵二叉树,输出前,中,后时我们采用递归的方式.同样也应该利用递归 ...

  8. cisco 3850 GBIC报错处理

    今天有用户cisco 3850插入多模千兆光模块后报错日志如下: *Oct 18 13:48:54: %PLATFORM_PM-6-MODULE_ERRDISABLE:The inserted SFP ...

  9. java虚拟机的原理

    所谓虚拟机,就是一台虚拟的机器.它是一款软件,用来执行一系列虚拟计算机指令,大体上虚拟机可以分为系统虚拟机和程序虚拟机,Visual Box .Vmare就属于系统虚拟机.他们完全是对物理计算机的仿真 ...

  10. 【Android端ANR卡顿检测】BlockCanary检测

    一.什么是BlockCanary? 检测主线程卡顿的一个开源工具,基本展现模式等都和LeakCanary很像 二.BlockCanary的工作原理是什么? 工作原理所涉及到的底层的内容一定要理解清楚 ...