Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:

  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.

Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

Idea 1. Subset sum

[1, 5, 11, 5]

containing 1: [1], sum {1}

containing 5: [5], [1, 5]   sum {5, 6}

containing 11: [11], [1, 11], [5, 11], [1, 5, 11]  {11, 12, 16, 17}

containing: 5: [5], [1, 5], [5, 5], [1, 5, 5], [11, 5], [1, 11, 5], [5, 11, 5], [1, 5, 11, 5], {5, 6, 10, 11, 16, 17, 21, 22}

Time complexity: O(2^n -1)

Space complexity: O(2^n -1)

 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
}
if(totalSum%2 != 0) {
return false;
} List<List<Integer>> endSum = new ArrayList<>();
for(int i = 0; i < nums.length; ++i) {
List<Integer> curr = new ArrayList<>();
if(nums[i] == totalSum/2) {
return true;
}
curr.add(nums[i]);
for(int j = 0; j < i; ++j) {
for(int val: endSum.get(j)) {
int currSum = val + nums[i];
if(currSum == totalSum/2) {
return true;
}
curr.add(currSum);
}
}
endSum.add(curr);
}
return false;
}
}

Idea 2: dynamic programming. Let dp[i][j] represents if the subset sum from num[0..i] could reach j,

dp[i][j] = dp[i-1][j] not picking nums[i],

    dp[i-1][j-nums[i]] picking nums[i]

Note. to initialise dp[-1][0] = 0

Time complexity: O(n*target)

Space complexity: O(n*target)

 class Solution {
private void backtrack(int[] nums, int i, boolean[][] dp, int target) {
if(i > nums.length) {
return;
} for(int j = 1; j <= target; ++j) {
dp[i][j] = dp[i-1][j];
if(j >= nums[i-1]) {
dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
}
}
backtrack(nums, i+1, dp, target);
} public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
} if(totalSum %2 != 0) {
return false;
}
int n = nums.length;
int target = totalSum/2;
boolean[][] dp = new boolean[n+1][target+1];
for(int i = 0; i <= n; ++i) {
dp[i][0] = true;
} backtrack(nums, 1, dp, target);
return dp[n][target];
}
}
 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0;
for(int num: nums) {
totalSum += num;
} if(totalSum %2 != 0) {
return false;
} int target = totalSum/2;
int m = nums.length;
boolean[][] dp = new boolean[m+1][target+1];
dp[0][0] = true; for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= target; ++j) {
dp[i][j] = dp[i-1][j];
if(j >= nums[i-1]) {
dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
}
}
} return dp[m][target];
}
}

Idea 2. dynamic programming, 二维到一维的优化,注意在二维公式中sum的循环是从小到大(从左到右),但是是前一行,转换成一维,需要用到前边的状态,所以要从右向左

dp[j] = dp[j] || dp[j-nums[i]]

dp[0] = true

Time complexity: O(n*target)

Space complexity: O(target)

 class Solution {
public boolean canPartition(int[] nums) {
int totalSum = 0; for(int num: nums) {
totalSum += num;
} if(totalSum % 2 != 0) {
return false;
} int target = totalSum/2;
int n = nums.length;
boolean[] dp = new boolean[target+1];
dp[0] = true; for(int i = 0; i < n; ++i) {
for(int j = target; j >= nums[i]; --j) {
dp[j] = dp[j] || dp[j-nums[i]];
}
} return dp[target];
}
}

Partition Equal Subset Sum的更多相关文章

  1. LN : leetcode 416 Partition Equal Subset Sum

    lc 416 Partition Equal Subset Sum 416 Partition Equal Subset Sum Given a non-empty array containing ...

  2. [LeetCode] Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  3. [LeetCode] 416. Partition Equal Subset Sum 相同子集和分割

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  4. Leetcode 416. Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  5. [leetcode]416. Partition Equal Subset Sum分割数组的和相同子集

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  6. 416. Partition Equal Subset Sum

    题目: Given a non-empty array containing only positive integers, find if the array can be partitioned ...

  7. Leetcode: Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  8. [Swift]LeetCode416. 分割等和子集 | Partition Equal Subset Sum

    Given a non-empty array containing only positive integers, find if the array can be partitioned into ...

  9. Leetcode ——Partition Equal Subset Sum

    Question Given a non-empty array containing only positive integers, find if the array can be partiti ...

随机推荐

  1. 1.3.1、CDH 搭建Hadoop在安装之前(端口---Cloudera Manager和Cloudera Navigator使用的端口)

    下图概述了Cloudera Manager,Cloudera Navigator和Cloudera Management Service角色使用的一些端口: Cloudera Manager和Clou ...

  2. Manifest File

    [Manifest File] on every build, webpack generates some webpack runtime code, which helps webpack do ...

  3. Mac mysql sql_model引起的问题

    问题: 我这里时应为timestamp引起的,服务器的数据使用的mysql5.本地使用的是mysql8,sql_model 不同导致数据不能够在数据库中添加. 解决: 在/etc/下查找my.cnf文 ...

  4. 转:JMeter压力测试及并发量计算

    最近的一个项目刚刚开发完,因为不是专业测试人员,所以记录下测试过程以备时间长忘记了. 一.JMeter的安装(Linux)1. 下载JMeter:这个就不细说了,直接去(http://jmeter.a ...

  5. 微信小程序接入百度统计

    一. 百度统计添加应用,获取appkey和微信小程序统计sdk: 1. 百度统计首页,点击“我的全部应用”右侧的添加按钮: 2. “应用类型”选择小程序统计,选择微信小程序,填写应用名称信息,选择内容 ...

  6. vue 实现多选

    v-model <template> <!--用户页面-选择关注--> <div class="follow"> <h4>选择关注& ...

  7. [剑指Offer]58-翻转字符串

    题目一 翻转单词顺序 题意 输入一个英文句子,翻转句子中的单词的顺序,但单词内自负的顺序不变.标点符号和普通字母一样处理. 例: 输入:"I am a student." 输出:& ...

  8. JAVA8 ARRAY、LIST操作 汇【5】)- JAVA8 LAMBDA LIST统计(求和、最大、最小、平均)

    public class Apple { private Integer id; private String name; private BigDecimal money; private Inte ...

  9. 运行SVO

    安装与运行的所有文档:https://github.com/uzh-rpg/rpg_svo/wiki 有两种安装方式: 有ros:https://github.com/uzh-rpg/rpg_svo/ ...

  10. MVC与WebApi中的异常统一处理

    1.简单例子 /// <summary> /// 全局页面控制器异常记录 MVC的异常处理 /// </summary> public class CustomErrorAtt ...