Burnside引理的感性证明
\(Burnside\)引理的感性证明:
- 其中:\(G\)是置换集合,\(|G|\)是置换种数,\(T_i\)是第\(i\)类置换中的不动点数。
\[L = \frac{1}{|G|} * \sum T_i\]
我们以\(2*2\)的方格图染色来举例感性证明。
每个格子有\(2\)种方案,不考虑旋转重构一共就有\(16\)种。
其中对于每一种等价类(也可以称之为【旋转轨道】),他们上面的所有方案都是旋转重构的,我们只需要记一次就可以了。也就是说,我们所求的本质不同的方案数,其实就是等价类的个数。
- 置换\(trans\)的不动点:对于置换\(trans\),置换后与自身相等不变的元素。
上面举出两种等价类的例子。可以看出,每一种等价类都在某些置换上是不动点(至少在0°是),且同一个等价类的所有元素,会同时作为\(/\)不作为某一个置换的不动点。手推一下可以得知,每一个等价类中所有元素,对不动点总数的贡献和恰好为\(|G|\)。
举例说明一下。
- \(e.g\):
- 元素\(13\):在置换\({1, 2, 3, 4}\)中均为不动点
- 和它同构的仅有它本身,该等价类对不动点贡献\(=4\)
- 元素\(15\):在置换\(1, 3\)中为不动点。
- 和它同构的共有\(|[1, 2]|=2\)个元素,该等价类对不动点贡献\(=4\)
- 元素\(i\):在置换\(1,k + 1, 2k + 1, ...pK+1\)中为不动点
- 和它同构的共有\(|[1, k]|=k\)个元素,该等价类对不动点贡献\(=p*k=|G|\) (\(p =|G| / k\))
- 元素\(13\):在置换\({1, 2, 3, 4}\)中均为不动点
由此我们就证出来了这个公式。其实证了也没啥用,只是图一个用着安心。
\[L = \frac{1}{|G|} * \sum T_i\]
Burnside引理的感性证明的更多相关文章
- 等价类计数问题(Polya定理和burnside引理)
零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)", ...
- Burnside引理&Pólya定理
Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解 ...
- ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理
LINK:Painting Graphs with AtCoDeer 看英文题面果然有点吃不消 一些细节会被忽略掉. 问每条边都要被染色 且一个环上边的颜色可以旋转. 用c种颜色有多少本质不同的方法. ...
- Burnside 引理与 Pólya 定理
群 群的定义 在数学中,群是由一种集合以及一个二元运算所组成的,符合"群公理"的代数结构. 一个群是一个集合 \(G\) 加上对 \(G\) 的二元运算.二元运算用 \(\cdot ...
- HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...
- 置换群、Burnside引理与等价类计数问题
置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...
- 置换群和Burnside引理,Polya定理
定义简化版: 置换,就是一个1~n的排列,是一个1~n排列对1~n的映射 置换群,所有的置换的集合. 经常会遇到求本质不同的构造,如旋转不同构,翻转交换不同构等. 不动点:一个置换中,置换后和置换前没 ...
- burnside引理&polya定理
burnside引理&polya定理 参考资料: <polya计数法的应用>--陈瑜希 黄学长 置换: 置换即是将n个元素的染色进行交换,产生一个新的染色方案. 群: 一个元素的集 ...
- 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...
随机推荐
- 解决Win10系统本地主机,网络受限占用CPU过高的问题
Win10版本为2015年第一个版本,第一次安装时没有这个问题,后面每次安装后开机正常,但是只要运行一段时间后(机子有运行各种软件的情况),发现CPU使用率为100% 即使结束所有在运行的程序,依然居 ...
- InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised.解决办法
最近使用requests进行get请求的时候,控制台输出如下错误. InsecureRequestWarning: Unverified HTTPS request is being made. Ad ...
- SQLServer之修改索引
使用SSMS数据库管理工具修改索引 使用表设计器修改索引 表设计器可以修改任何类型的索引,修改索引的步骤相同,本示例为修改唯一非聚集索引. 1.连接数据库,选择数据库,选择数据表->右键点击表- ...
- Python 函数调用&定义函数&函数参数
一.函数调用 在python中内置了很多函数,我们可以直接调用 .想要调用函数首先要知道函数的名称及包含的参数,还可以通过查看python官方的文档:https://docs.python.org/3 ...
- 在Centos7.2(64位)下搭建Web服务器
一:通过Yum安装mysql 1 # wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm 2 # rpm -i ...
- 二 Struts2 接收数据
struts2绑定页面参数三种方式1.普通属性:在action中写与页面参数相同的属性名,然后set方法2.用对象来接收:在action中写一个对象,表单元素名改为:对象名.属性名3.用实现Model ...
- mysql 报错ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executin
解决办法1. 修改用户密码mysql> alter user 'root'@'localhost' identified by 'youpassword'; 或者 mysql> set p ...
- 第十届蓝桥杯省赛JavaB组个人题解
前言 以下的第十届蓝桥杯Java B组省赛的题目题解只是我个人的题解,提供一些解题思路,仅作参考,如有错误,望大家指出,不甚感激,我会及时更改. 试题 A: 组队 ----- 答案:490 [问题描述 ...
- Linux内存管理 (9)mmap(补充)
之前写过一篇简单的介绍mmap()/munmap()的文章<Linux内存管理 (9)mmap>,比较单薄,这里详细的梳理一下. 从常用的使用者角度介绍两个函数的使用:然后重点是分析内核的 ...
- EF 6.x和EF Core实现返回dynamic类型
前言 未曾想需要直接返回dynamic,多次尝试未能实现,最终还是在stackoverflow上找到了解决方案,特此备忘录. public static dynamic SqlQuery(this D ...