Atcoder Tenka1 Programmer Contest 2019
C
签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然。
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+;
int n,f[N][];
char s[N];
int main()
{
scanf("%d",&n);
scanf("%s",s+);
for(int i=;i<=n;i++)
if(s[i]=='.')
{
f[i][]=f[i-][];
f[i][]=min(f[i-][],f[i-][])+;
}
else{
f[i][]=f[i-][]+;
f[i][]=min(f[i-][],f[i-][]);
}
printf("%d\n",min(f[n][],f[n][]));
}
D
方案数=总方案数-不能拼成三角形的方案数。不能拼成三角形,即最长边大于等于边总和的一半。于是可以f[i]表示以i为最长边能组成三角形的方案数,g[i]表示凑成长度为i的边方案。f[0]=2^n,g[0]=1,然后每次转移f除以2即可。注意讨论最长边为总和一半的情况(没讨论WA了一发)。
#include<bits/stdc++.h>
using namespace std;
const int N=,mod=,inv2=,inv3=;
int n,ans,sum,lim,pw2[N],pw3[N],a[N],f[N*N],g[N*N];
int main()
{
scanf("%d",&n);
ans=f[]=g[]=;
for(int i=;i<=n;i++)f[]=2ll*f[]%mod;
for(int i=;i<=n;i++)
{
ans=3ll*ans%mod;
scanf("%d",&a[i]);
sum+=a[i];
for(int j=sum;j>=a[i];j--)
f[j]=(f[j]+1ll*f[j-a[i]]*inv2)%mod,g[j]=(g[j]+g[j-a[i]])%mod;
}
lim=(sum+)/;
for(int i=lim;i<=sum;i++)ans=(ans-3ll*f[i]%mod+mod)%mod;
if(sum%==)ans=(ans+3ll*g[lim])%mod;
printf("%d\n",ans);
}
E
很容易发现答案只有2种:1、所有系数的gcd的质因数。2、1~n以内符合条件的数(具体证明是看官方题解的)。第一种无脑枚举,第二种直接O(n^2)暴力即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+;
int n,m,a[N],h[N];
set<int>ans;
void check(int p)
{
for(int i=;i<p-;i++)h[i]=;
for(int i=,x;i<=n;i++)x=i%(p-),h[x]=(h[x]+a[i])%p;
for(int i=;i<p-;i++)if(h[i])return;
ans.insert(p);
}
int main()
{
scanf("%d",&n);
for(int i=n;i>=;i--)scanf("%d",&a[i]),m=__gcd(m,abs(a[i]));
for(int i=;i*i<=m;i++)
if(m%i==)
{
ans.insert(i);
while(m%i==)m/=i;
}
if(m!=)ans.insert(m);
for(int i=;i<=n;i++)
if(a[]%i==)
{
int flag=;
for(int j=;j*j<=i;j++)if(i%j==){flag=;break;}
if(flag)check(i);
}
for(auto x:ans)printf("%d\n",x);
}
F
咕
rank=105,rating+=108,因为原本rating过低。
Atcoder Tenka1 Programmer Contest 2019的更多相关文章
- Atcoder Tenka1 Programmer Contest 2019 题解
link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...
- Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors
题意: 给出一个多项式,问有多少个质数\(p\)使得\(p\;|\;f(x)\),不管\(x\)取何值 思路: 首先所有系数的\(gcd\)的质因子都是可以的. 再考虑一个结论,如果在\(\bmod ...
- Atcoder Tenka1 Programmer Contest 2019 D Three Colors
题意: 有\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案: 所有石头都染上了一种颜色 令\(R, G, B\)为染了'R', 染了'G ...
- Atcoder Tenka1 Programmer Contest 2019题解
传送门 \(C\ Stones\) 最后肯定形如左边一段白+右边一段黑,枚举一下中间的断点,预处理一下前缀和就可以了 int main(){ // freopen("testdata.in& ...
- 【AtCoder】Tenka1 Programmer Contest 2019
Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...
- Atcoder Tenka1 Programmer Contest D: IntegerotS 【思维题,位运算】
http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_d 给定N,K和A1...AN,B1...BN,选取若干个Ai使它们的或运算值小于等于K ...
- Atcoder Tenka1 Programmer Contest C C - 4/N
http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_c 我怀疑我是不是智障.... 本来一直的想法是能不能构造出答案,把N按奇偶分,偶数好办 ...
- Tenka1 Programmer Contest 2019
C:即要使前一部分为白色后一部分为黑色,枚举分割点前缀和计算答案取min即可. #include<bits/stdc++.h> using namespace std; #define l ...
- Tenka1 Programmer Contest 2019 D - Three Colors
Three Colors 思路:dp 设sum为所有边的总和 不能组成三角形的情况:某条边长度>=ceil(sum/2),可以用dp求出这种情况的方案数,然后用总方案数减去就可以求出答案. 注意 ...
随机推荐
- Java多线程基础(二)
1.多线程数据安全 线程同步:多个线程需要访问同一资源时,需要以某种顺序来确定该资源某一时刻只能被一个线程使用.从而,解决并发操作可能带来的异常. 2.同步代码块实现同步(部分代码的访问,我们希望它同 ...
- 记录基于VMware虚拟机, Linux7.2下外部主机访问配置
systemctl stop firewalld.service #停止firewall systemctl disable firewalld.service #禁止firewall开机启动
- 解决topjui中工具栏按钮删除刷新从属表
遇到了这么个问题:当在从属datagrid表格中,点击主表工具栏按钮中的删除,通过后台的多表删除的sql,返回给前台之后,从属表的数据成功在数据库中删除,但是在前台页面显示的时候,只刷新了主表,子表未 ...
- HBase 数据模型
在HBase中,数据是存储在有行有列的表格中.这是与关系型数据库重复的术语,并不是有用的类比.相反,HBase可以被认为是一个多维度的映射. HBase数据模型术语 Table(表格) 一个HBase ...
- jdk 环境变量
1. jdk安装后的目录 2.JAVA_HOME C:\Program Files\Java\jdk1.8.0_172 3.PATH %JAVA_HOME%\bin 4.CLASSPATH .;%JA ...
- 部署Java和Tomcat
Tomcat介绍 Tomcat服务器是一个免费的开放源代码的Web应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP网页的首选. Tomcat和Nginx.Apach ...
- 01背包问题(动态规划)python实现
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题, ...
- python之shell
import subprocess # 返回命令执行结果 # result = subprocess.call('ls -l', shell=True) # result = subprocess.c ...
- 怎么在Vue的某个组件中根据组件tag标签名获取到对应的VueComponent实例呢
1.以前玩omi框架的时候,有Omi.get方法来获取实例, ...好久没玩了,忘了.反正很喜欢该方法.2.如今想在vue里面怎么能够快速获取到对应组件标签名的的实例呢?3.文档也看过,似乎脑海中没啥 ...
- Set.js--创建无重复值的无序集合
Set 集合,不同于 Array,是一种没有重复值的集合. 以下代码出自于<JavaScript 权威指南(第六版)>P217,注意:这里并不是指 es6 / es2015 中的 Set ...