pymongo使用手册
MongoDB是由C++语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似JSON对象,它的字段值可以包含其他文档、数组及文档数组,非常灵活。在这一节中,我们就来看看Python 3下MongoDB的存储操作。
1. 准备工作
在开始之前,请确保已经安装好了MongoDB并启动了其服务,并且安装好了Python的PyMongo库。
2. 连接MongoDB
连接MongoDB时,我们需要使用PyMongo库里面的MongoClient。一般来说,传入MongoDB的IP及端口即可,其中第一个参数为地址host,第二个参数为端口port(如果不给它传递参数,默认是27017):
import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)
这样就可以创建MongoDB的连接对象了。
另外,MongoClient的第一个参数host还可以直接传入MongoDB的连接字符串,它以mongodb开头,例如:
client = MongoClient('mongodb://localhost:27017/')
这也可以达到同样的连接效果。
3. 指定数据库
MongoDB中可以建立多个数据库,接下来我们需要指定操作哪个数据库。这里我们以test数据库为例来说明,下一步需要在程序中指定要使用的数据库:
db = client.test
这里调用client的test属性即可返回test数据库。当然,我们也可以这样指定:
db = client['test']
这两种方式是等价的。
4. 指定集合
MongoDB的每个数据库又包含许多集合(collection),它们类似于关系型数据库中的表。
下一步需要指定要操作的集合,这里指定一个集合名称为students。与指定数据库类似,指定集合也有两种方式:
collection = db.students
collection = db['students']
这样我们便声明了一个Collection对象。
5. 插入数据
接下来,便可以插入数据了。对于students这个集合,新建一条学生数据,这条数据以字典形式表示:
student = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
这里指定了学生的学号、姓名、年龄和性别。接下来,直接调用collection的insert()方法即可插入数据,代码如下:
result = collection.insert(student)
print(result)
在MongoDB中,每条数据其实都有一个_id属性来唯一标识。如果没有显式指明该属性,MongoDB会自动产生一个ObjectId类型的_id属性。insert()方法会在执行后返回_id值。
运行结果如下:
5932a68615c2606814c91f3d
当然,我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:
student1 = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
student2 = {
'id': '20170202',
'name': 'Mike',
'age': 21,
'gender': 'male'
}
result = collection.insert([student1, student2])
print(result)
返回结果是对应的_id的集合:
[ObjectId('5932a80115c2606a59e8a048'), ObjectId('5932a80115c2606a59e8a049')]
实际上,在PyMongo 3.x版本中,官方已经不推荐使用insert()方法了。当然,继续使用也没有什么问题。官方推荐使用insert_one()和insert_many()方法来分别插入单条记录和多条记录,示例如下:
student = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
result = collection.insert_one(student)
print(result)
print(result.inserted_id)
运行结果如下:
<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5
与insert()方法不同,这次返回的是InsertOneResult对象,我们可以调用其inserted_id属性获取_id。
对于insert_many()方法,我们可以将数据以列表形式传递,示例如下:
student1 = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
student2 = {
'id': '20170202',
'name': 'Mike',
'age': 21,
'gender': 'male'
}
result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)
运行结果如下:
<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId('5932abf415c2607083d3b2ac'), ObjectId('5932abf415c2607083d3b2ad')]
该方法返回的类型是InsertManyResult,调用inserted_ids属性可以获取插入数据的_id列表。
6. 查询
插入数据后,我们可以利用find_one()或find()方法进行查询,其中find_one()查询得到的是单个结果,find()则返回一个生成器对象。示例如下:
result = collection.find_one({'name': 'Mike'})
print(type(result))
print(result)
这里我们查询name为Mike的数据,它的返回结果是字典类型,运行结果如下:
<class 'dict'>
{'_id': ObjectId('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'Mike', 'age': 21, 'gender': 'male'}
可以发现,它多了_id属性,这就是MongoDB在插入过程中自动添加的。
此外,我们也可以根据ObjectId来查询,此时需要使用bson库里面的objectid:
from bson.objectid import ObjectId
result = collection.find_one({'_id': ObjectId('593278c115c2602667ec6bae')})
print(result)
其查询结果依然是字典类型,具体如下:
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
当然,如果查询结果不存在,则会返回None。
对于多条数据的查询,我们可以使用find()方法。例如,这里查找年龄为20的数据,示例如下:
results = collection.find({'age': 20})
print(results)
for result in results:
print(result)
运行结果如下:
<pymongo.cursor.Cursor object at 0x1032d5128>
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'Kevin', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'Harden', 'age': 20, 'gender': 'male'}
返回结果是Cursor类型,它相当于一个生成器,我们需要遍历取到所有的结果,其中每个结果都是字典类型。
如果要查询年龄大于20的数据,则写法如下:
results = collection.find({'age': {'$gt': 20}})
这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号$gt,意思是大于,键值为20。
这里将比较符号归纳为下表。
| 符号 | 含义 | 示例 |
|---|---|---|
$lt |
小于 | {'age': {'$lt': 20}} |
$gt |
大于 | {'age': {'$gt': 20}} |
$lte |
小于等于 | {'age': {'$lte': 20}} |
$gte |
大于等于 | {'age': {'$gte': 20}} |
$ne |
不等于 | {'age': {'$ne': 20}} |
$in |
在范围内 | {'age': {'$in': [20, 23]}} |
$nin |
不在范围内 | {'age': {'$nin': [20, 23]}} |
另外,还可以进行正则匹配查询。例如,查询名字以M开头的学生数据,示例如下:
results = collection.find({'name': {'$regex': '^M.*'}})
这里使用$regex来指定正则匹配,^M.*代表以M开头的正则表达式。
这里将一些功能符号再归类为下表。
| 符号 | 含义 | 示例 | 示例含义 |
|---|---|---|---|
$regex |
匹配正则表达式 | {'name': {'$regex': '^M.*'}} |
name以M开头 |
$exists |
属性是否存在 | {'name': {'$exists': True}} |
name属性存在 |
$type |
类型判断 | {'age': {'$type': 'int'}} |
age的类型为int |
$mod |
数字模操作 | {'age': {'$mod': [5, 0]}} |
年龄模5余0 |
$text |
文本查询 | {'$text': {'$search': 'Mike'}} |
text类型的属性中包含Mike字符串 |
$where |
高级条件查询 | {'$where': 'obj.fans_count == obj.follows_count'} |
自身粉丝数等于关注数 |
关于这些操作的更详细用法,可以在MongoDB官方文档找到:
https://docs.mongodb.com/manual/reference/operator/query/。
7. 计数
要统计查询结果有多少条数据,可以调用count()方法。比如,统计所有数据条数:
count = collection.find().count()
print(count)
或者统计符合某个条件的数据:
count = collection.find({'age': 20}).count()
print(count)
运行结果是一个数值,即符合条件的数据条数。
8. 排序
排序时,直接调用sort()方法,并在其中传入排序的字段及升降序标志即可。示例如下:
results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])
运行结果如下:
['Harden', 'Jordan', 'Kevin', 'Mark', 'Mike']
这里我们调用pymongo.ASCENDING指定升序。如果要降序排列,可以传入pymongo.DESCENDING。
9. 偏移
在某些情况下,我们可能想只取某几个元素,这时可以利用skip()方法偏移几个位置,比如偏移2,就忽略前两个元素,得到第三个及以后的元素:
results = collection.find().sort('name', pymongo.ASCENDING).skip(2)
print([result['name'] for result in results])
运行结果如下:
['Kevin', 'Mark', 'Mike']
另外,还可以用limit()方法指定要取的结果个数,示例如下:
results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2)
print([result['name'] for result in results])
运行结果如下:
['Kevin', 'Mark']
如果不使用limit()方法,原本会返回三个结果,加了限制后,会截取两个结果返回。
值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,因为这样很可能导致内存溢出。此时可以使用类似如下操作来查询:
from bson.objectid import ObjectId
collection.find({'_id': {'$gt': ObjectId('593278c815c2602678bb2b8d')}})
这时需要记录好上次查询的_id。
10. 更新
对于数据更新,我们可以使用update()方法,指定更新的条件和更新后的数据即可。例如:
condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)
这里我们要更新name为Kevin的数据的年龄:首先指定查询条件,然后将数据查询出来,修改年龄后调用update()方法将原条件和修改后的数据传入。
运行结果如下:
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}
返回结果是字典形式,ok代表执行成功,nModified代表影响的数据条数。
另外,我们也可以使用$set操作符对数据进行更新,代码如下:
result = collection.update(condition, {'$set': student})
这样可以只更新student字典内存在的字段。如果原先还有其他字段,则不会更新,也不会删除。而如果不用$set的话,则会把之前的数据全部用student字典替换;如果原本存在其他字段,则会被删除。
另外,update()方法其实也是官方不推荐使用的方法。这里也分为update_one()方法和update_many()方法,用法更加严格,它们的第二个参数需要使用$类型操作符作为字典的键名,示例如下:
condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)
这里调用了update_one()方法,第二个参数不能再直接传入修改后的字典,而是需要使用{'$set': student}这样的形式,其返回结果是UpdateResult类型。然后分别调用matched_count和modified_count属性,可以获得匹配的数据条数和影响的数据条数。
运行结果如下:
<pymongo.results.UpdateResult object at 0x10d17b678>
1 0
我们再看一个例子:
condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)
这里指定查询条件为年龄大于20,然后更新条件为{'$inc': {'age': 1}},也就是年龄加1,执行之后会将第一条符合条件的数据年龄加1。
运行结果如下:
<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1
可以看到匹配条数为1条,影响条数也为1条。
如果调用update_many()方法,则会将所有符合条件的数据都更新,示例如下:
condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)
这时匹配条数就不再为1条了,运行结果如下:
<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3
可以看到,这时所有匹配到的数据都会被更新。
11. 删除
删除操作比较简单,直接调用remove()方法指定删除的条件即可,此时符合条件的所有数据均会被删除。示例如下:
result = collection.remove({'name': 'Kevin'})
print(result)
运行结果如下:
{'ok': 1, 'n': 1}
另外,这里依然存在两个新的推荐方法——delete_one()和delete_many()。示例如下:
result = collection.delete_one({'name': 'Kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)
运行结果如下:
<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4
delete_one()即删除第一条符合条件的数据,delete_many()即删除所有符合条件的数据。它们的返回结果都是DeleteResult类型,可以调用deleted_count属性获取删除的数据条数。
12. 其他操作
另外,PyMongo还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()和find_one_and_update(),它们是查找后删除、替换和更新操作,其用法与上述方法基本一致。
另外,还可以对索引进行操作,相关方法有create_index()、create_indexes()和drop_index()等。
关于PyMongo的详细用法,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html。
另外,还有对数据库和集合本身等的一些操作,这里不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/。
本节讲解了使用PyMongo操作MongoDB进行数据增删改查的方法。
pymongo使用手册的更多相关文章
- MongoDB和pymongo自用手册
[*] 本文出处:http://b1u3buf4.xyz/ [*] 本文作者:B1u3Buf4 [*] 本文授权:禁止转载 从自己的另一处博客移动过来.长期维护,不定期添加新内容. 前述和安装 mon ...
- python操作mongoDB(pymongo的使用)
pymongo操作手册 连接数据库 方法一(推荐) import pymongo client = pymongo.MongoClient(host="localhost",por ...
- 最全的linux命令大全,shell运维手册
shell实例手册 0 说明{ 手册制作: 雪松} 1 文件{ ls -rtl # 按时间倒叙列出所有目录和文件 ll -rt touch file ...
- (转)Python实例手册
原文地址:http://hi.baidu.com/quanzhou722/item/cf4471f8e23d3149932af2a7 实在是太好的资料了,不得不转 python实例手册 #encodi ...
- (转)shell实例手册
原文地址:http://hi.baidu.com/quanzhou722/item/f4a4f3c9eb37f02d46d5c0d9 实在是太好的资料了,不得不转 shell实例手册 0说明{ 手册制 ...
- 开源ceph管理平台inkscope部署手册
一.前情提要 关于inkscope就不做过多介绍了,就是ceph的一个开源管理控制平台,跟ceph官方的calamary以及intel的VSM差不多一类,只是各自侧重点不一样. 相对而言,因为inks ...
- 转载 python实例手册
python实例手册 #encoding:utf8# 设定编码-支持中文 0说明 手册制作: 雪松 更新日期: 2013-12-19 欢迎系统运维加入Q群: 198173206 # 加群请回答问题 请 ...
- 【转载】python实例手册
今天写爬虫的时候遇到了问题,在网上不停地查找资料,居然碰到两篇好文章: 1.python实例手册 作者:没头脑的土豆 另一篇在这:shell实例手册 python实例手册 #encoding:ut ...
- 【转载】shell实例手册
原文地址:shell实例手册 作者:没头脑的土豆 shell实例手册 0说明{ 手册制作: 雪松 更新日期: -- 欢迎系统运维加入Q群: 请使用"notepad++"打开此文档 ...
随机推荐
- [JDK8]读写锁的改进:StampedLock
StampedLock是Java8引入的一种新的锁机制,简单的理解,可以认为它是读写锁的一个改进版本,读写锁虽然分离了读和写的功能,使得读与读之间可以完全并发,但是读和写之间依然是冲突的,读锁会完全阻 ...
- Teamviewer远程ssh命令行更改密码启动
Teamviewer远程ssh命令行更改密码启动 设置密码 $ sudo teamviewer passwd [NewPasswd ] 查看teamviewer信息 $ teamviewer info ...
- 第四节:IO、序列化和反序列化、加密解密技术
一. IO读写 这里主要包括文件的读.写.移动.复制.删除.文件夹的创建.文件夹的删除等常规操作. 注意:这里需要特别注意,对于普通的控制台程序和Web程序,将"相对路径"转换成& ...
- 动态规划dp
一.概念:动态规划dp:是一种分阶段求解决策问题的数学思想. 总结起来就一句话:大事化小,小事化了 二.例子 1.走台阶问题 F(10):10级台阶的走法数量 所以:F(10)=F(9)+F(8) F ...
- burp Suite 模块Authz 使用方法
这个模块是朋友告诉我的,然后进行了研究使用方法. 以下为个人理解,如有错误感谢各位纠正. 0x00 安装Authz Extender > BApp Store > Authz > i ...
- sqlserver 生成脚本执行创建索引
create or alter proc SP_CreateIndex as begin if exists(select * from sys.objects where name='execsql ...
- Mysql的跨服务器 关联查询--Federated引擎
1.确认开启Federated引擎 查询FEDERATED功能是否开启: show ENGINES; 2.如果状态为NO则需修改my.ini文件,增加一行federated配置: ...
- vue知多少,你对vue的认识比别人高在哪?
1.beforeCreated/created区别? beforeCreated钩子能干什么 2.data中使用props 3.get/set依赖收集 get收集依赖(观察者) set 观察者重新求值 ...
- ado.net 使用:ExecuteReader 无法获取输出参数
解决方法: 要获取到输出参数.需要连接关闭之后才行. 一般都是用using把打开数据库连接的reader包起来
- PHP中的排序函数sort、asort、rsort、krsort、ksort区别分析
sort() 函数用于对数组单元从低到高进行排序. rsort() 函数用于对数组单元从高到低进行排序. asort() 函数用于对数组单元从低到高进行排序并保持索引关系. arsort() 函数用于 ...