决策树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。

决策树的构建

想要构建一个决策树,那么咱们首先就需要有一定的已知信息来作为决策树的构建依据。

我们采用下图的数据来进行构建 决策树

一个完整的数据应该包括数据特征对应的决策信息

下表中的数据,代表对购买电脑的客户信息的记录,分为age/imcome/student...等信息

在该数据源中,age 到 credit_rating 这4列称为特征,最后的class:buys_computer 代表最终的决策信息

首先选择一个节点为开始(age),再根据该节点往下拓展,分为youth,middle_aged,seniors

根据这三类去上图的数据源检索,可以得出 当middle_aged时,clas_lable全部为yes,所以该分支就结束了。

重复上面的流程...知道最后的节点都是 决策结果信息

信息熵

流程和基本原理了解后,我们就要考虑一个问题:

信息,如何度量?

1948年,香农提出了 ”信息熵(entropy)“的概念
一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少

      例子:猜世界杯冠军,假如一无所知,猜多少次?
每个队夺冠的几率不是相等的

信息熵用 比特(bit) 来衡量信息的多少

信息熵公式为:


大写X代表信息集合
小写x代表集合中的某一
p(x)代表概率

假设 X={A,B,C}
A概率为0.2,
B概率为0.4,
C概率为0.6

那么计算结果为
-0.2 * log 0.2 +
-0.4 * log 0.4 +
-0.6 * log 0.6 的和

策树归纳算法 (ID3)

ID3算法是根据信息获取量(Information Gain):
Gain(A) = Info(D) - Infor_A(D)
通过A来作为节点分类获取了多少信息


类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048

代码实现

数据源为第一个表格的数据

# 决策树
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import tree
from sklearn import preprocessing
import pydotplus # Read csv file
allElectronicsData = open('AllElectronics.csv','r')
csvReader = csv.reader(allElectronicsData)
# csvList = [ r for r in csvReader]
# print(csvList)
# 取头
headers = next(csvReader) # print(headers) featureList =[] #特征
labelList = [] #头 # 字典化所有特征
for row in csvReader:
labelList.append(row[len(row) - 1])
rowDic = {}
for i in (range(1,len(row)-1)):
rowDic[headers[i]] = row[i]
# print(rowDic)
featureList.append(rowDic) print(featureList)
print(labelList) # 矢量化 特征
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray() print("dummyX:")
print(str(dummyX))
print(vec.get_feature_names()) # 矢量化 class label
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print("dummyY:")
print(dummyY) # 构建决策树
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(dummyX,dummyY)
print("clf: ")
print(str(clf)) # 查看决策树
csvDot = tree.export_graphviz(clf,feature_names=vec.get_feature_names(),out_file=None)
graph = pydotplus.graph_from_dot_data(csvDot)
graph.write_pdf('1.pdf')
# Image(graph.create_png()) # 使用决策树计算
# 这里直接使用已经矢量化完事的数据来修改一下 进行预测,正常应该采用原始数据进行预处理后 进行预测
new_Data = dummyX[0, :]
print(dummyX[0, :])
# print(new_Data)
new_Data[0] = 0
new_Data[2] = 1
# print(new_Data)
# 预测该数据
predictedY = clf.predict([new_Data])
print(predictedY)

决策树 Decision Tree的更多相关文章

  1. 机器学习算法实践:决策树 (Decision Tree)(转载)

    前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决 ...

  2. 数据挖掘 决策树 Decision tree

    数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组 ...

  3. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  4. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  5. (ZT)算法杂货铺——分类算法之决策树(Decision tree)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分 ...

  6. 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  7. 机器学习方法(四):决策树Decision Tree原理与实现技巧

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面三篇写了线性回归,lass ...

  8. 机器学习-决策树 Decision Tree

    咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sk ...

  9. 【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分.如今我们得到了每一个特征值得 ...

随机推荐

  1. PBRT笔记(9)——贴图

    采样与抗锯齿 当高分辨率贴图被缩小时,贴图会出现严重的混淆现象.虽然第7章中的非均匀采样技术可以减少这种混叠的视觉影响,但是更好的解决方案是实现基于分辨率进行采样的纹理函数. 可以在使用贴图时先对贴图 ...

  2. 练习2-1 Programming in C is fun!

    练习2-1 Programming in C is fun! 一 问题描述 本题要求编写程序,输出一个短句“Programming in C is fun!”. 输入格式: 本题目没有输入. 输出格式 ...

  3. mysql5.7.X版本only_full_group_by问题解决

    一.出错原因 最近因为开发数据库与部署数据库版本不同,带来了几个问题,其中only_full_group_by问题是之前没有遇到的. 具体报错如下 [Err] 1055 - Expression #1 ...

  4. OI中常犯的傻逼错误总结

    OI中常犯的傻逼错误总结 问题 解决方案 文件名出错,包括文件夹,程序文件名,输入输出文件名  复制pdf的名字  没有去掉调试信息  调试时在后面加个显眼的标记  数组开小,超过定义大小,maxn/ ...

  5. C++ otlv4 连接 sql server 数据库小记

    otlv4介绍: http://otl.sourceforge.net/ 测试代码 // testotlv4.cpp : 定义控制台应用程序的入口点. // #include "stdafx ...

  6. Nginx的gzip

    webpack  compression-webpack-plugin => .gz CompressionPlugin = require("compression-webpack- ...

  7. SQL语句基本

    基础 创建数据库 CREATE DATABASE database-name 1 删除数据库 drop database dbname 1 备份sql server 创建 备份数据的 device U ...

  8. Java作业六(2017-10-30)

    /*游戏引擎包,播放音乐*/ import com.rupeng.game.GameCore; public class Mc implements Runnable{ public static v ...

  9. LeetCode编程训练 - 回溯(Backtracking)

    回溯基础 先看一个使用回溯方法求集合子集的例子(78. Subsets),以下代码基本说明了回溯使用的基本框架: //78. Subsets class Solution { private: voi ...

  10. html5 postMessage 实现类似 sendMessage 的同步效果,支持跨域

    实现一个客户端发送 “save 一个答案,在获取答案, 跨域的另一个页面中,回调返回”3“的场景. 客户端:请在 http://127.0.0.1/pk/index.html 打开 <html& ...