一:梯度下降:

梯度下降本质上是对极小值的无限逼近。先求得梯度,再取其反方向,以定步长在此方向上走一步,下次计算则从此点开始,一步步接近极小值。需要注意的是步长的取值,如果过小,则需要多次迭代,耗费大量时间才能取得极小值;如果过大,则可能难以取得较为接近极小值的点,在极小值两边来回跳跃,无法接近极小值。

而步长的取值往往于梯度有关,如果梯度的值较大,则步长可以取大的值,如果梯度较小,则步长应取较小值。

优势:高效,优化途径多

劣势:需要一些超参数:regularization(正则化)参数以及number of iterations(迭代次数),对feature scalling(特征缩放)敏感。

 from sklearn.linear_model import SGDClassifier as SGD

 x=[[0,0],[1,1]]
y=[0,1]
clf = SGD(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None,
n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
shuffle=True, tol=None, verbose=0, warm_start=False)
clf.fit(x,y)
print(clf.predict([[2,2]]))
print(clf.coef_)
print(clf.intercept_)
print(clf.decision_function([[2,2]])

根据官方网站的代码,使用了SGDClassifier分类器,进行了尝试。

 # coding = UTF-8
from sklearn.linear_model import SGDClassifier as SGD
from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt
import numpy as np X,y = make_blobs(n_samples=50,centers=2,random_state=0,cluster_std=0.6)
clf = SGD(loss='hinge',alpha=0.01,max_iter=200,fit_intercept=True)
clf.fit(X,y)
print("预测1:",clf.predict([[1,10]]))
print("预测2:",clf.predict([[2,2]]))
print("回归系数:",clf.coef_)
print("偏差",clf.intercept_)
print("##################")
print(X.shape)
print(y.shape)

使用make_blobs创建数据测试。

注:

  • loss="hinge": (soft-margin) linear Support Vector Machine ((软-间隔)线性支持向量机),
  • loss="modified_huber": smoothed hinge loss (平滑的 hinge 损失),
  • loss="log": logistic regression (logistic 回归),
  • and all regression losses below(以及所有的回归损失)。

前两个 loss functions(损失函数)是懒惰的,如果一个例子违反了 margin constraint(边界约束),它们仅更新模型的参数, 这使得训练非常有效率,即使使用了 L2 penalty(惩罚)我们仍然可能得到稀疏的模型结果。

梯度下降需注意参数:

alpha:乘以正则化项的常数,默认0.0001。当被设置为‘optimal’时也被用于计算学习效率

fit_intercept:是否该截取截距,默认True。如果为‘False’则假定数据以及居中。

梯度下降常用方法:

fit(X,y,coef_init=None,intercept_init=None,sample_weight=None):拟合线性模型(训练)

X:{类似数组的稀疏矩阵},形式:(n_sanmples,n_features)。

y:类似数组,形式:(n_samples)。

sample_weight:数组样本,形式:(n_samples,),optional(可选),可以设定个别样本的权重,如果不设定,则默认相等。

predict(X):用于预测X样本中的标签(结果/分类)

X:{类似数组的稀疏矩阵},形式:[n_samples,n_features]。

score(X,y,samples_weight=None)::(与上方相同)用于返回测试数据和标签(结果)的平均精度。

二:逻辑回归(逻辑斯特增长模型):

逻辑回归实际为一种分类的线性模型。如图,值域为0~1。如果需要解决非线性问题,与支持向量机SVM的思路相同,即将特征映射到高维来解决问题。因此,也可用梯度下降来求解。

 import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression as Log data=[ [-0.017612,14.053064,0],
[-1.395634,4.662541,1],
[-0.752157,6.538620,0],
[-1.322371,7.152853,0],
[0.423363,11.054677,0],
[0.406704,7.067335,1],
[0.667394,12.741452,0],
[-2.460150,6.866805,1],
[0.569411,9.548755,0],
[-0.026632,10.427743,0],
[0.850433,6.920334,1],
[1.347183,13.175500,0],
[1.176813,3.167020,1],
[-1.781871,9.097953,0],
[-0.566606,5.749003,1],
[0.931635,1.589505,1],
[-0.024205,6.151823,1],
[-0.036453,2.690988,1],
[-0.196949,0.444165,1],
[1.014459,5.754399,1] ] dataMat = np.mat(data)
y=dataMat[:,2]
b=np.ones(y.shape)
x=np.column_stack((b,dataMat[:,0:2]))
x=np.mat(x) model = Log()
model.fit(x,y)
print(model) predicted = model.predict(x)
answer = model.predict_proba(x)
print (predicted)
print(answer)

LogisticRegression中有这些参数需要注意:

penalty:'l1','l2'使用l1正则化,还是l2,默认l2

tol:精度为多少时可以停止计算,默认1e-4(十的负四次方)

C:C越大,正则化因子所占比例越小,C越小,正则化因子所占比例越大,默认1.0

solver:使用什么方法,默认liblinear(线性算法)。newton-cg,lbfgs,liblinear(对小数据集表现较好,大数据集建议使用sag及saga),sag(随即平均梯度下降算法Stochastic Average Gradient desqent solver),saga。

max_iter:最大迭代次数,默认100。

LogisticRegression常用方法:

fit(X,y,sample_weight=None):用于拟合模型(训练)

X:{类似数组的稀疏矩阵},形式:(n_samples,n_features)。

y:类似数组,形式:(n_samples)。

sample_weight:数组样本,形式:(n_samples,),optional(可选),可以设定个别样本的权重,如果不设定,则默认相等。

predict(X):用于预测X样本的标签(结果/分类)

X:同上。

返回C:数组,形式:[n_samples]

predict_proba(X):用于预测为对应标签的概率

X:同上。

返回一个n行k列的数组,n对应样本数量,k为可能的标签(结果/分类),每一行的结果之和应为1

sklearn使用——梯度下降及逻辑回归的更多相关文章

  1. 机器学习算法整理(二)梯度下降求解逻辑回归 python实现

    逻辑回归(Logistic regression) 以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 用梯度下降求解逻辑回归 Logi ...

  2. [Python]数据挖掘(1)、梯度下降求解逻辑回归——考核成绩分类

    ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模 ...

  3. 02-12 Logistic(逻辑)回归

    目录 逻辑回归 一.逻辑回归学习目标 二.逻辑回归引入 三.逻辑回归详解 3.1 线性回归与逻辑回归 3.2 二元逻辑回归的假设函数 3.2.1 让步比 3.2.2 Sigmoid函数图像 3.3 二 ...

  4. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  5. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  6. 逻辑回归(logic regression)的分类梯度下降

    首先明白一个概念,什么是逻辑回归:所谓回归就是拟合,说明x是连续的:逻辑呢?就是True和False,也就是二分类:逻辑回归即使就是指对于二分类数据的拟合(划分). 那么什么是模型呢?模型其实就是函数 ...

  7. [Deep Learning] 神经网络编程基础 (Basics of Neural Network Programming) - 逻辑回归-梯度下降-计算图

    在神经网络中,假如有m个训练集,我们想把他们加入训练,第一个想到得就是用一个for循环来遍历训练集,从而开始训练.但是在神经网络中,我们换一个计算方法,这就是 前向传播和反向传播. 对于逻辑回归,就是 ...

  8. Sklearn实现逻辑回归

    方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...

  9. sklearn逻辑回归(Logistic Regression)类库总结

    class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_inter ...

随机推荐

  1. Python爬虫入门教程 23-100 石家庄链家租房数据抓取

    1. 写在前面 作为一个活跃在京津冀地区的开发者,要闲着没事就看看石家庄这个国际化大都市的一些数据,这篇博客爬取了链家网的租房信息,爬取到的数据在后面的博客中可以作为一些数据分析的素材. 我们需要爬取 ...

  2. [Python Web]常见的 POST 提交数据的方式

    本文参考整理于:https://imququ.com/post/four-ways-to-post-data-in-http.html 简介 这里介绍了,用 POST 方法提交数据时,常见的三种方式: ...

  3. [Python Web]部署完网站需要做的基本后续工作

    简述 今天自己上线了一个简单的 Page,没有什么功能就是一个展示页. 但是,我发现部署完,上线后,还要弄不少东西.下面就是我记录.整理的一些上线网站基本都会用到的网站和配置. 加入统计代码 这个是必 ...

  4. Chapter 4 Invitations——28

    "Oh, thanks, now that's all cleared up." Heavy sarcasm. “哦,真感谢,现在一切都清楚了.” 我很讽刺的说道 I realiz ...

  5. linux下的powerline安装教程

    powerline是一款比较炫酷的状态栏工具,多用于vim和终端命令行.先上两张效果图,然后介绍一下具体的安装教程. 图 1 powerline在shell下的效果图 图 2 powerline在vi ...

  6. 【Java资源免费分享,网盘自己拿】

    JavaSE: Java马士兵:链接:https://pan.baidu.com/s/1jJRvxGi密码:v3xb Java毕向东:链接:https://pan.baidu.com/s/1ggzHk ...

  7. [一]class 文件浅析 .class文件格式详解 字段方法属性常量池字段 class文件属性表 数据类型 数据结构

    前言概述  本文旨在讲解class文件的整体结构信息,阅读本文后应该可以完整的了解class文件的格式以及各个部分的逻辑组成含义   class文件包含了java虚拟机指令集 和  符号表   以及若 ...

  8. Spring源码情操陶冶-tx:advice解析器

    承接Spring源码情操陶冶-自定义节点的解析.本节关于事务进行简单的解析 spring配置文件样例 简单的事务配置,对save/delete开头的方法加事务,get/find开头的设置为不加事务只读 ...

  9. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  10. Android破解学习之路(十一)—— 关于去更新

    根据对话框的文字找到对应的对话框,设置visability 为gone 修改版本号,aptool 搜索http://,找到更新的地址,修改为127.0.0.0 搜索update,upgrade,ver ...