准备数据

from pymongo import MongoClient
import datetime client=MongoClient('mongodb://localhost:27017')
table=client['db1']['emp'] l=[
('张飞','male',18,'20170301','',7300.33,401,1), #以下是教学部
('张云','male',78,'20150302','teacher',1000000.31,401,1),
('刘备','male',81,'20130305','teacher',8300,401,1),
('关羽','male',73,'20140701','teacher',3500,401,1),
('曹操','male',28,'20121101','teacher',2100,401,1),
('诸葛亮','female',18,'20110211','teacher',9000,401,1),
('周瑜','male',18,'19000301','teacher',30000,401,1),
('司马懿','male',48,'20101111','teacher',10000,401,1), ('袁绍','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
('张全蛋','female',38,'20101101','sale',2000.35,402,2),
('鹌鹑蛋','female',18,'20110312','sale',1000.37,402,2),
('王尼玛','female',18,'20160513','sale',3000.29,402,2),
('我尼玛','female',28,'20170127','sale',4000.33,402,2), ('杨过','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
('小龙女','male',18,'19970312','operation',20000,403,3),
('郭靖','female',18,'20130311','operation',19000,403,3),
('黄蓉','male',18,'20150411','operation',18000,403,3),
('梅超风','female',18,'20140512','operation',17000,403,3)
] for n,item in enumerate(l):
d={
"_id":n,
'name':item[0],
'sex':item[1],
'age':item[2],
'hire_date':datetime.datetime.strptime(item[3],'%Y%m%d'),
'post':item[4],
'salary':item[5]
}
table.save(d) # 准备数据

分组的概念与mysql相同,以某个字段作为依据进行归类,其目的是为了统计

$match

#match 用于对数据进行筛选
{"$match":{"字段":"条件"}},可以使用任何常用查询操作符$gt,$lt,$in等 #例1、select * from db1.emp where post='teacher';
db.emp.aggregate({"$match":{"post":"teacher"}}) #例2、select * from db1.emp where id > 3;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
)

$project

# project翻译为投射 ,即将一个数据结果映射为另一个结果 过程中可以对某些数据进行修改  控制其最终显示的结果
{"$project":{"要保留的字段名":1,"要去掉的字段名":0,"新增的字段名":"表达式"}} #1、select name,post,(age+1) as new_age from db1.emp;
db.emp.aggregate(
{"$project":{
"name":1,
"post":1
}}) #2、表达式之数学表达式
{"$add":[expr1,expr2,...,exprN]} #相加
{"$subtract":[expr1,expr2]} #第一个减第二个
{"$multiply":[expr1,expr2,...,exprN]} #相乘
{"$divide":[expr1,expr2]} #第一个表达式除以第二个表达式的商作为结果
{"$mod":[expr1,expr2]} #第一个表达式除以第二个表达式得到的余数作为结果
#例:所有人年龄加1显示
db.emp.aggregate(
{"$project":{
"name":1,
"post":1,
"new_age":{"$add":["$age",1]}
}})
# 错误示范: 原因:参加运算的字段不能被影藏
db.emp.aggregate(
{"$project":{
"name":1,
"salary":1,
"age":0,
"new_age":{"$add":["$age",1]}
}}) #3、表达式之日期表达式:$year,$month,$week,$dayOfMonth,$dayOfWeek,$dayOfYear,$hour,$minute,$second
#例如:select name,date_format("%Y") as hire_year from db1.emp
db.emp.aggregate(
{"$project":{"name":1,"hire_year":{"$year":"$hire_date"}}}
) #例如查看每个员工的工作多长时间
db.emp.aggregate(
{"$project":{"name":1,"hire_period":{
"$subtract":[
{"$year":new Date()},
{"$year":"$hire_date"}
]
}}}
) #4、字符串表达式
{"$substr":[字符串/$值为字符串的字段名,起始位置,截取几个字节]}
{"$concat":[expr1,expr2,...,exprN]} #指定的表达式或字符串连接在一起返回,只支持字符串拼接
{"$toLower":expr}
{"$toUpper":expr} db.emp.aggregate( {"$project":{"NAME":{"$toUpper":"$name"}}}) #5、逻辑表达式
$and
$or
$not
其他见Mongodb权威指南

$group

# $group用于分组
# 分组后具体信息被影藏
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post"}}
) # 通常我们要对分组后的内容进行统计这就需要对应的几个聚合函数 # select id,avg(salary) from db1.emp where id > 3 group by post;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
)
# math用于匹配 与mysql不同的是没有顺序限制 每一个操作像是一个管道接收上一个的数据进行处理再传给下一个 # select id,avg(salary) from db1.emp where id > 3 group by post having avg(salary) > 10000;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
{"$match":{"avg_salary":{"$gt":10000}}}
) # 对应的聚合函数 $sum、$avg、$max、$min、$first、$last #1、将分组字段传给$group函数的_id字段即可
{"$group":{"_id":"$sex"}} #按照性别分组
{"$group":{"_id":"$post"}} #按照职位分组
{"$group":{"_id":{"state":"$state","city":"$city"}}} #按照多个字段分组,比如按照州市分组 #2、分组后聚合得结果,类似于sql中聚合函数的聚合操作符:$sum、$avg、$max、$min、$first、$last
#例1:select post,max(salary) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"}}}) #例2:去每个部门最大薪资与最低薪资
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"},"min_salary":{"$min":"$salary"}}}) #例3:如果字段是排序后的,那么$first,$last会很有用,比用$max和$min效率高
db.emp.aggregate({"$group":{"_id":"$post","first_id":{"$first":"$_id"}}}) #例4:求每个部门的总工资
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":"$salary"}}}) #例5:求每个部门的人数
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":1}}}) #3、数组操作符
{"$addToSet":expr}:不重复
{"$push":expr}:重复
# 等同于group_concat
#例:查询岗位名以及各岗位内的员工姓名:select post,group_concat(name) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","names":{"$push":"$name"}}})
db.emp.aggregate({"$group":{"_id":"$post","names":{"$addToSet":"$name"}}})

$sort ,limit,skip

{"$sort":{"字段名":1,"字段名":-1}} #1升序,-1降序
{"$limit":n}
{"$skip":n} #跳过多少个文档
#例1、取平均工资最高的前两个部门 db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
}
)
#例2、
db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
},
{
"$skip":1
}
)
排序:$sort、限制:$limit、跳过:$skip

$sample

# 随机取出n条记录
#集合users包含的文档如下
{ "_id" : 1, "name" : "dave123", "q1" : true, "q2" : true }
{ "_id" : 2, "name" : "dave2", "q1" : false, "q2" : false }
{ "_id" : 3, "name" : "ahn", "q1" : true, "q2" : true }
{ "_id" : 4, "name" : "li", "q1" : true, "q2" : false }
{ "_id" : 5, "name" : "annT", "q1" : false, "q2" : true }
{ "_id" : 6, "name" : "li", "q1" : true, "q2" : true }
{ "_id" : 7, "name" : "ty", "q1" : false, "q2" : true } #下述操作时从users集合中随机选取3个文档
db.users.aggregate({"$sample":{"size":3}})
随机选取n个:$sample

可视化工具

https://robomongo.org

MongoDB分组查询,聚合查询,以及复杂查询的更多相关文章

  1. Django 多表查询练习题 Q查询 F查询 聚合 分组

    -------------------------------------------------自己偷的懒,或许用加倍时间也补不回来,珍惜现在的拥有的时光,把我现在! 上节回顾 基于对象的跨表查询( ...

  2. python 全栈开发,Day74(基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询)

    昨日内容回顾 # 一对多的添加方式1(推荐) # book=Book.objects.create(title="水浒传",price=100,pub_date="164 ...

  3. (转)python 全栈开发,Day74(基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询)

    昨日内容回顾 # 一对多的添加方式1(推荐) # book=Book.objects.create(title="水浒传",price=100,pub_date="164 ...

  4. python-day71--django多表双下划线查询及分组聚合及F/Q查询

    #====================================双下划线的跨表查询===============# 前提 此时 related_name=bookList 属性查询: # 查 ...

  5. 70 多表查询的分组F 聚合 Q 查询

    聚合查询和分组查询 聚合 aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典.键的名称是聚合值的标识符,值是计算出来的聚合值.键的名称是按照字段和聚合函 ...

  6. Django基础(5) ----基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询

    一.基于双下划线的跨表查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接模型(mode ...

  7. Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试)

    Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终 ...

  8. Django-ORM之聚合和分组查询、F和Q查询、事务

    聚合查询 聚合对查询的结果进行一步的计算加工. aggregate()是QuerySet 的一个终止子句 ,他的作用是,返回一个包含一些键值对的字典.键的名称是聚合值的标识符,值是计算出来的聚合值.键 ...

  9. Django【第7篇】:Django之ORM跨表操作(聚合查询,分组查询,F和Q查询等)

    django之跨表查询及添加记录 一:创建表 书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many); ...

随机推荐

  1. 好代码是管出来的——使用GitHub

    前面的文章介绍了Git的基本概念和用法,本文则是基于GitHub的一个实践介绍,主要内容有: GitHub简介 个人与组织 仓库的创建与维护 Fork与pull request 小结 GitHub简介 ...

  2. Redis 主从复制原理及雪崩 穿透问题

    定义: Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMw ...

  3. 从0开始的Python学习016异常

    简介 当你的程序不能正常运行的时候,Python会在控制台打印一段提醒,告诉你一个错误,这个错误就是异常. 错误 我在控制台写了一段无效的代码,将print()的括号去掉,在执行这条语句的时候,系统提 ...

  4. bootstarp 多图片上传 带进度条

    前台代码如下: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head&g ...

  5. Swift 访问控制

    1.private private访问级别所修饰的属性或者方法只能在当前类里访问. 2.fileprivate fileprivate访问级别所修饰的属性或者方法在当前的Swift源文件里可以访问. ...

  6. WIn10系统软件默认安装c盘后消失看不见问题

    一.win10系统下c盘,program 文件下 软件一般为32 或者 64位,但是现在win10系统有些C盘会显示program  x86 向这种情况的话我们的软件默认安装在这个盘的话可能会造成很多 ...

  7. PowerShell或命令行运行javac xx.java提示“编码GBK的不可映射字符”

    由于JDK是国际版的,我们在用javac编译时,编译程序首先会获得我们操作系统默认采用的编码格式(GBK),然后JDK就把Java源文件从GBK编码格式转换为Java内部默认的Unicode格式放入内 ...

  8. 基于IPv6的数据包分析(第三组)

    一.实验拓扑 二.配置过程 本处提供R1.R2.R4的详细配置过程(包含静态路由的配置) 1)      R1: R1(config)#int e1/0 R1(config-if)#ipv6 addr ...

  9. 逆向工程核心原理-IA-32寄存器

    IA-32由四类寄存器组成:通用寄存器,段寄存器,程序状态与控制寄存器,指令指针寄存器. 通用寄存器:用于传送和暂存数据,也可参与算数逻辑运算,并保存运算结果. EAX(0-31) 32位      ...

  10. Windows下切分文件(GnuWin32)

    windows下碰到查看大日志文件还真麻烦,今天找了个工具来做这个:安装GnuWin32,然后用里面的split命令分割日志文件 ps:发现intellij idea还挺好,超过2g的日志文件也能进行 ...