MongoDB分组查询,聚合查询,以及复杂查询
准备数据
from pymongo import MongoClient
import datetime
client=MongoClient('mongodb://localhost:27017')
table=client['db1']['emp']
l=[
('张飞','male',18,'20170301','',7300.33,401,1), #以下是教学部
('张云','male',78,'20150302','teacher',1000000.31,401,1),
('刘备','male',81,'20130305','teacher',8300,401,1),
('关羽','male',73,'20140701','teacher',3500,401,1),
('曹操','male',28,'20121101','teacher',2100,401,1),
('诸葛亮','female',18,'20110211','teacher',9000,401,1),
('周瑜','male',18,'19000301','teacher',30000,401,1),
('司马懿','male',48,'20101111','teacher',10000,401,1),
('袁绍','female',48,'20150311','sale',3000.13,402,2),#以下是销售部门
('张全蛋','female',38,'20101101','sale',2000.35,402,2),
('鹌鹑蛋','female',18,'20110312','sale',1000.37,402,2),
('王尼玛','female',18,'20160513','sale',3000.29,402,2),
('我尼玛','female',28,'20170127','sale',4000.33,402,2),
('杨过','male',28,'20160311','operation',10000.13,403,3), #以下是运营部门
('小龙女','male',18,'19970312','operation',20000,403,3),
('郭靖','female',18,'20130311','operation',19000,403,3),
('黄蓉','male',18,'20150411','operation',18000,403,3),
('梅超风','female',18,'20140512','operation',17000,403,3)
]
for n,item in enumerate(l):
d={
"_id":n,
'name':item[0],
'sex':item[1],
'age':item[2],
'hire_date':datetime.datetime.strptime(item[3],'%Y%m%d'),
'post':item[4],
'salary':item[5]
}
table.save(d)
# 准备数据
分组的概念与mysql相同,以某个字段作为依据进行归类,其目的是为了统计
$match
#match 用于对数据进行筛选
{"$match":{"字段":"条件"}},可以使用任何常用查询操作符$gt,$lt,$in等
#例1、select * from db1.emp where post='teacher';
db.emp.aggregate({"$match":{"post":"teacher"}})
#例2、select * from db1.emp where id > 3;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
)
$project
# project翻译为投射 ,即将一个数据结果映射为另一个结果 过程中可以对某些数据进行修改 控制其最终显示的结果
{"$project":{"要保留的字段名":1,"要去掉的字段名":0,"新增的字段名":"表达式"}}
#1、select name,post,(age+1) as new_age from db1.emp;
db.emp.aggregate(
{"$project":{
"name":1,
"post":1
}})
#2、表达式之数学表达式
{"$add":[expr1,expr2,...,exprN]} #相加
{"$subtract":[expr1,expr2]} #第一个减第二个
{"$multiply":[expr1,expr2,...,exprN]} #相乘
{"$divide":[expr1,expr2]} #第一个表达式除以第二个表达式的商作为结果
{"$mod":[expr1,expr2]} #第一个表达式除以第二个表达式得到的余数作为结果
#例:所有人年龄加1显示
db.emp.aggregate(
{"$project":{
"name":1,
"post":1,
"new_age":{"$add":["$age",1]}
}})
# 错误示范: 原因:参加运算的字段不能被影藏
db.emp.aggregate(
{"$project":{
"name":1,
"salary":1,
"age":0,
"new_age":{"$add":["$age",1]}
}})
#3、表达式之日期表达式:$year,$month,$week,$dayOfMonth,$dayOfWeek,$dayOfYear,$hour,$minute,$second
#例如:select name,date_format("%Y") as hire_year from db1.emp
db.emp.aggregate(
{"$project":{"name":1,"hire_year":{"$year":"$hire_date"}}}
)
#例如查看每个员工的工作多长时间
db.emp.aggregate(
{"$project":{"name":1,"hire_period":{
"$subtract":[
{"$year":new Date()},
{"$year":"$hire_date"}
]
}}}
)
#4、字符串表达式
{"$substr":[字符串/$值为字符串的字段名,起始位置,截取几个字节]}
{"$concat":[expr1,expr2,...,exprN]} #指定的表达式或字符串连接在一起返回,只支持字符串拼接
{"$toLower":expr}
{"$toUpper":expr}
db.emp.aggregate( {"$project":{"NAME":{"$toUpper":"$name"}}})
#5、逻辑表达式
$and
$or
$not
其他见Mongodb权威指南
$group
# $group用于分组
# 分组后具体信息被影藏
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post"}}
)
# 通常我们要对分组后的内容进行统计这就需要对应的几个聚合函数
# select id,avg(salary) from db1.emp where id > 3 group by post;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
)
# math用于匹配 与mysql不同的是没有顺序限制 每一个操作像是一个管道接收上一个的数据进行处理再传给下一个
# select id,avg(salary) from db1.emp where id > 3 group by post having avg(salary) > 10000;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
{"$match":{"avg_salary":{"$gt":10000}}}
)
# 对应的聚合函数 $sum、$avg、$max、$min、$first、$last
#1、将分组字段传给$group函数的_id字段即可
{"$group":{"_id":"$sex"}} #按照性别分组
{"$group":{"_id":"$post"}} #按照职位分组
{"$group":{"_id":{"state":"$state","city":"$city"}}} #按照多个字段分组,比如按照州市分组
#2、分组后聚合得结果,类似于sql中聚合函数的聚合操作符:$sum、$avg、$max、$min、$first、$last
#例1:select post,max(salary) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"}}})
#例2:去每个部门最大薪资与最低薪资
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"},"min_salary":{"$min":"$salary"}}})
#例3:如果字段是排序后的,那么$first,$last会很有用,比用$max和$min效率高
db.emp.aggregate({"$group":{"_id":"$post","first_id":{"$first":"$_id"}}})
#例4:求每个部门的总工资
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":"$salary"}}})
#例5:求每个部门的人数
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":1}}})
#3、数组操作符
{"$addToSet":expr}:不重复
{"$push":expr}:重复
# 等同于group_concat
#例:查询岗位名以及各岗位内的员工姓名:select post,group_concat(name) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","names":{"$push":"$name"}}})
db.emp.aggregate({"$group":{"_id":"$post","names":{"$addToSet":"$name"}}})
$sort ,limit,skip
{"$sort":{"字段名":1,"字段名":-1}} #1升序,-1降序
{"$limit":n}
{"$skip":n} #跳过多少个文档
#例1、取平均工资最高的前两个部门
db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
}
)
#例2、
db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
},
{
"$skip":1
}
)
排序:$sort、限制:$limit、跳过:$skip
$sample
# 随机取出n条记录
#集合users包含的文档如下
{ "_id" : 1, "name" : "dave123", "q1" : true, "q2" : true }
{ "_id" : 2, "name" : "dave2", "q1" : false, "q2" : false }
{ "_id" : 3, "name" : "ahn", "q1" : true, "q2" : true }
{ "_id" : 4, "name" : "li", "q1" : true, "q2" : false }
{ "_id" : 5, "name" : "annT", "q1" : false, "q2" : true }
{ "_id" : 6, "name" : "li", "q1" : true, "q2" : true }
{ "_id" : 7, "name" : "ty", "q1" : false, "q2" : true }
#下述操作时从users集合中随机选取3个文档
db.users.aggregate({"$sample":{"size":3}})
随机选取n个:$sample
可视化工具
MongoDB分组查询,聚合查询,以及复杂查询的更多相关文章
- Django 多表查询练习题 Q查询 F查询 聚合 分组
-------------------------------------------------自己偷的懒,或许用加倍时间也补不回来,珍惜现在的拥有的时光,把我现在! 上节回顾 基于对象的跨表查询( ...
- python 全栈开发,Day74(基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询)
昨日内容回顾 # 一对多的添加方式1(推荐) # book=Book.objects.create(title="水浒传",price=100,pub_date="164 ...
- (转)python 全栈开发,Day74(基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询)
昨日内容回顾 # 一对多的添加方式1(推荐) # book=Book.objects.create(title="水浒传",price=100,pub_date="164 ...
- python-day71--django多表双下划线查询及分组聚合及F/Q查询
#====================================双下划线的跨表查询===============# 前提 此时 related_name=bookList 属性查询: # 查 ...
- 70 多表查询的分组F 聚合 Q 查询
聚合查询和分组查询 聚合 aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典.键的名称是聚合值的标识符,值是计算出来的聚合值.键的名称是按照字段和聚合函 ...
- Django基础(5) ----基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询
一.基于双下划线的跨表查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接模型(mode ...
- Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试)
Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终 ...
- Django-ORM之聚合和分组查询、F和Q查询、事务
聚合查询 聚合对查询的结果进行一步的计算加工. aggregate()是QuerySet 的一个终止子句 ,他的作用是,返回一个包含一些键值对的字典.键的名称是聚合值的标识符,值是计算出来的聚合值.键 ...
- Django【第7篇】:Django之ORM跨表操作(聚合查询,分组查询,F和Q查询等)
django之跨表查询及添加记录 一:创建表 书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many); ...
随机推荐
- 网页验证码出不来,读取验证码时出错:javax.imageio.IIOException: Can't create cache file!
版权声明:本文为博主原创文章,仅作为学习交流使用 转载请注明出处 https://www.cnblogs.com/linck/p/10593053.html 今天打开项目时,发现登陆界面的验证码出不来 ...
- CMake与Make最简单直接的区别 [转]
写程序大体步骤为: 1.用编辑器编写源代码,如.c文件. 2.用编译器编译代码生成目标文件,如.o. 3.用链接器连接目标代码生成可执行文件,如.exe. 但如果源文件太多,一个一个编译时就会特别麻烦 ...
- BERT模型在多类别文本分类时的precision, recall, f1值的计算
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...
- 【es6】数组排重
let set = new Set([1,2,3,4,4,4,4,4]); console.log( Array.from(set) ); //输出:[ 1, 2, 3, 4 ]
- redis 初步认识二(c#调用redis)
前置:服务器安装redis 1.引用redis 2.使用redis(c#) 一 引用redis (nuget 搜索:CSRedisCore) 二 使用redis(c#) using System ...
- 验证码的实现py3
import randomflag = 1try_=0while (flag): try_ +=1 yan = "" for i in range(0,4): cun=random ...
- centos7之zabbix3.2代理(zabbix-proxy)搭建
zabbix的强大之处也在于它是分布式监控系统,对于多机房大集群情况下,肯定不是一台zabbix-server服务器来进行信息的收集等工作,就要用到代理了.在记录zabbix-proxy之前,要系统的 ...
- Jenkins+Git+Maven搭建自动化构建平台
http://blog.csdn.net/xlgen157387/article/details/50353317
- 【linux】Python3.6安装报错 configure: error: no acceptable C compiler found in $PATH
安装python的时候出现如下的错误: [root@master ~]#./configure --prefix=/usr/local/python3.6 checking build system ...
- docker容器启动haproxy
1.在本地新增haproxy.cfg文件(本次haproxy.cfg文件路径为/root/haproxy.cfg),内容如下: #---------------- # Global settings ...