在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$

证明:

(1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &=\lm\sum_i\xi_i\eta_i\cdot \sum_k\xi_k\eta_k +\mu\sum_i\xi_i^2\cdot\sum_j\eta_j^2 +\mu\sum_i\eta_i\eta_i\cdot \sum_k\xi_k\eta_k\\ &=(\lm+\mu)({\bf \xi}\cdot{\bf\eta})^2+ \mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

(2)  $\la$: 若 $\lm+\mu\geq 0$, 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2; \eex$$ 若 $\lm+\mu<0$, 则 $$\beex \bea \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &\geq (\lm+\mu)\sex{|{\bf \xi}|\cdot|{\bf\eta}|}^2 +\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2\\ &=(\lm+2\mu) |{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

(3)  $\ra$: 取 $$\bex {\bf \xi}=(1,0,0)^T,\quad{\bf\eta}=(0,1,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l=\mu>0.  \eex$$ 取 $$\bex {\bf \xi}={\bf\eta}=(1,0,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l =\lm+2\mu>0.  \eex$$

[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件的更多相关文章

  1. [物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件

    在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \ee ...

  2. [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达

    设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...

  3. [物理学与PDEs]第2章习题1 无旋时的 Euler 方程

    试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \c ...

  4. [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减

    在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  7. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  8. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  9. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

随机推荐

  1. android菜鸟,了解android工程目录结构

  2. vue 快速入门、常用指令(1)

    1. vue.js的快速入门使用 1.1 vue.js库的下载 vue.js是目前前端web开发最流行的工具库之一,由尤雨溪在2014年2月发布的. 官方网站 中文:https://cn.vuejs. ...

  3. 关键字-super

    super可以理解为是指向自己超(父)类对象的一个指针,而这个超类指的是离自己最近的一个父类. class BaseAction { String name; int age; void value( ...

  4. ESP8266天线问题

    http://www.icxbk.com/ask/detail/28832.html 目前市面上常见的外接天线包括 1.FPC天线,就是一小块柔性PCB,上面走一个铜线,下方不覆铜,然后一般带一个贴纸 ...

  5. Linux内核入门到放弃-页缓存和块缓存-《深入Linux内核架构》笔记

    内核为块设备提供了两种通用的缓存方案. 页缓存(page cache) 块缓存(buffer cache) 页缓存的结构 在页缓存中搜索一页所花费的时间必须最小化,以确保缓存失效的代价尽可能低廉,因为 ...

  6. c++stack类的用法

    官方解释: LIFO stack Stacks are a type of container adaptor, specifically designed to operate in a LIFO ...

  7. SQL Server中NULL的一个测试

    我们都知道SQL Server中NULL是一个很特殊的存在,因为NULL不会等于任何值,且NULL也不会不等于任何值.对于NULL我们只能使用IS或IS NOT关键字来进行比较. 我们先来看看下面一个 ...

  8. .Net Core应用框架Util介绍(二)

    Util的开源地址 https://github.com/dotnetcore/util Util的开源协议 Util以MIT协议开源,这是目前最宽松的开源协议,你不仅可以用于商业项目,还能把Util ...

  9. HDU-1695 莫比乌斯反演

    这里学习一下莫比乌斯反演 翻看了很多书,发现莫比乌斯反演,准确来说不是一种固有的公式,而是一种法则. 我们定义F(n),为f(d)的和函数,而定义f(n)为某儿算术函数. 反演公式1:反演n的因子时 ...

  10. springboot打jar包正常无法访问页面

    网上看到太多说版本换成 1.4.2.RELEASE. 可以将程序打成war包发布, 1.启动类改为 @Overrideprotected SpringApplicationBuilder config ...