[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0. \eex$$
证明:
(1) 对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &=\lm\sum_i\xi_i\eta_i\cdot \sum_k\xi_k\eta_k +\mu\sum_i\xi_i^2\cdot\sum_j\eta_j^2 +\mu\sum_i\eta_i\eta_i\cdot \sum_k\xi_k\eta_k\\ &=(\lm+\mu)({\bf \xi}\cdot{\bf\eta})^2+ \mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2. \eea \eeex$$
(2) $\la$: 若 $\lm+\mu\geq 0$, 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2; \eex$$ 若 $\lm+\mu<0$, 则 $$\beex \bea \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &\geq (\lm+\mu)\sex{|{\bf \xi}|\cdot|{\bf\eta}|}^2 +\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2\\ &=(\lm+2\mu) |{\bf \xi}|^2\cdot |{\bf\eta}|^2. \eea \eeex$$
(3) $\ra$: 取 $$\bex {\bf \xi}=(1,0,0)^T,\quad{\bf\eta}=(0,1,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l=\mu>0. \eex$$ 取 $$\bex {\bf \xi}={\bf\eta}=(1,0,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l =\lm+2\mu>0. \eex$$
[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件的更多相关文章
- [物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件
在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0. \ee ...
- [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...
- [物理学与PDEs]第2章习题1 无旋时的 Euler 方程
试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \c ...
- [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减
在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
随机推荐
- docker容器日志收集方案(方案N,其他中间件传输方案)
由于docker虚拟化的特殊性导致日志收集方案的多样性和复杂性下面接收几个可能的方案 这个方案各大公司都在用只不过传输方式大同小异 中间件使用kafka是肯定的,kafka的积压与吞吐能力相当强悍 ...
- PHP跨域jsonp方式
<?php header('Access-Control-Allow-Origin:*');//注意!跨域要加这个头 上面那个没有 $arr = array ('a'=>1,'b'=> ...
- 最小化spring XML配置,Spring提供了4种自动装配策略。
1.ByName自动装配:匹配属性的名字 在配置文件中的写法: <bean name="course" class="course类的全包名">&l ...
- vscode 编写vue
开启保存时检查代码语法 安装 让配置生效 添加新配置 cnpm install mockjs -D
- MySQL之库相关操作
一 系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MyS ...
- Linux笔记-ps -aux的结果解析
参考: https://blog.csdn.net/flyingleo1981/article/details/7739490 ps 的参数说明ps 提供了很多的选项参数,常用的有以下几个: l 长格 ...
- 基于 HTML5 的工业互联网云平台监控机房 U 位
前言 机柜 U 位管理是一项突破性创新技术--继承了 RFID 标签(电子标签)的优点的同时,完全解决了 RFID 技术(非接触式的自动识别技术)在机房 U 位资产监控场应用景中的四大缺陷,采用工业互 ...
- OpenStack-Neutron(5)
一. Neutron 概述 SDN(software-defined networking)软件定义网络,其所具有的灵活性和自动化优势使其成为云时代网络管理的主流. Neutron的设计目标是实现“网 ...
- springcloud
基本术语 1.服务器 服务器:是提供计算服务的设备.由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力.服务器的构成:包括处理器.硬盘.内存.系统总线等,和通用 ...
- python之property、类方法和静态方法
一.完整的property1.定义一个方法被伪装成属性之后,应该可以执行一个属性的增删改查操作,增加和修改就对应着被setter装饰的方法,删除一个属性对应着被deleter装饰的方法. @prope ...