在看官方教程时,无意中发现别人写的一个脚本,非常简洁。

官方教程地址:http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#sphx-glr-beginner-data-loading-tutorial-py

使用的是dlib自带的特征点检测库,初期用来测试还是不错的

 """Create a sample face landmarks dataset.

 Adapted from dlib/python_examples/face_landmark_detection.py
See this file for more explanation. Download a trained facial shape predictor from:
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
import dlib
import glob
import csv
from skimage import io detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
num_landmarks = 68 with open('face_landmarks.csv', 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile) header = ['image_name']
for i in range(num_landmarks):
header += ['part_{}_x'.format(i), 'part_{}_y'.format(i)] csv_writer.writerow(header) for f in glob.glob('*.jpg'):
img = io.imread(f)
dets = detector(img, 1) # face detection # ignore all the files with no or more than one faces detected.
if len(dets) == 1:
row = [f] d = dets[0]
# Get the landmarks/parts for the face in box d.
shape = predictor(img, d)
for i in range(num_landmarks):
part_i_x = shape.part(i).x
part_i_y = shape.part(i).y
row += [part_i_x, part_i_y] csv_writer.writerow(row)

附上使用matplotlib显示特征点的脚本:

 from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils # Ignore warnings
import warnings
warnings.filterwarnings("ignore") plt.ion() # interactive mode landmarks_frame = pd.read_csv('faces/face_landmarks.csv') n = 5
img_name = landmarks_frame.iloc[n, 0]
landmarks = landmarks_frame.iloc[n, 1:].as_matrix()
landmarks = landmarks.astype('float').reshape(-1, 2) print('Image name: {}'.format(img_name))
print('Landmarks shape: {}'.format(landmarks.shape))
print('First 4 Landmarks: {}'.format(landmarks[:4])) def show_landmarks(image, landmarks):
"""Show image with landmarks"""
plt.imshow(image)
plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated plt.figure()
show_landmarks(io.imread(os.path.join('faces/', img_name)),
landmarks)
plt.show()

效果图:

深度学习(PYTORCH)-2.python调用dlib提取人脸68个特征点的更多相关文章

  1. Python 3 利用 Dlib 实现人脸 68个 特征点的标定

    0. 引言 利用 Dlib 官方训练好的模型 “shape_predictor_68_face_landmarks.dat” 进行 68 个点标定: 利用 OpenCv 进行图像化处理,在人脸上画出 ...

  2. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  3. [深度学习工具]·极简安装Dlib人脸识别库

    [深度学习工具]·极简安装Dlib人脸识别库 Dlib介绍 Dlib是一个现代化的C ++工具箱,其中包含用于在C ++中创建复杂软件以解决实际问题的机器学习算法和工具.它广泛应用于工业界和学术界,包 ...

  4. 深度学习 + OpenCV,Python实现实时视频目标检测

    使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项 ...

  5. PDNN: 深度学习的一个Python工具箱

    PDNN: 深度学习的一个Python工具箱 PDNN是一个在Theano环境下开发出来的一个Python深度学习工具箱.它由苗亚杰(Yajie Miao)原创.现在仍然在不断努力去丰富它的功能和扩展 ...

  6. [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    [深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...

  7. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  8. 一个可扩展的深度学习框架的Python实现(仿keras接口)

    一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将 ...

  9. 【神经网络与深度学习】【python开发】caffe-windows使能python接口使用draw_net.py绘制网络结构图过程

    [神经网络与深度学习][python开发]caffe-windows使能python接口使用draw_net.py绘制网络结构图过程 标签:[神经网络与深度学习] [python开发] 主要是想用py ...

随机推荐

  1. Cookie、Session和自定义分页

    一.cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响, ...

  2. 关于window.localtion的用法几点总结

    参考链接: http://blog.csdn.net/cui_angel/article/details/7957274(1)window.location.pathname设置或获取对象指定的文件名 ...

  3. Java单例实现及分析

    双重检验锁实现方式 public class Singleton { //定义一个私有的空构造方法,防止直接用new实例化 private Singleton() {} private static ...

  4. Ubuntu18.04: GPU Driver 390.116 + CUDA9.0 + cuDNN7 + tensorflow 和pytorch环境搭建

    1.close nouveau 终端输入:sudo gedit /etc/modprobe.d/blacklist.conf 末尾加两行 blacklist nouveau options nouve ...

  5. promise用法十道题

    JS是单线程语言,多数的网站不需要大量计算,程序耗时主要是在磁盘I/O和网络I/O上 ,虽然固态硬盘SSD读取很快,但是和CPU比起来却不在一个数量级上,而且网络上的一个数据包来回时间更慢,所以一些C ...

  6. ThinkPHP5.0源码学习之缓存Cache(一)

    一.文件 1.缓存配置文件:thinkphp\convention.php 2.缓存文件:thinkphp\library\think\Cache.php 3.驱动目录:thinkphp\librar ...

  7. vmware12启动centos6.8报错ACPI:memory_hp:Memory online failed

    报错信息 打开后出现黑屏上只显示 ACPI:memory_hp:Memory online failed for 0x10000000 - 0x80000000 BUG: soft lockup - ...

  8. [转]java 关于httpclient 请求https (如何绕过证书验证)

    原文:http://www.blogjava.net/hector/archive/2012/10/23/390073.html 第一种方法,适用于httpclient4.X 里边有get和post两 ...

  9. Win10安装LoadRunner11

    一.下载 地址:http://www.51testing.com/?uid-4827-action-viewspace-itemid-225451 二.安装 本来想写,结果和别人的一样就不写了:htt ...

  10. C语言操作符

    C语言操作符的分类: 算术操作符 逻辑运算符 位操作符     赋值操作符 单目操作符 关系操作符 条件操作符 逗号表达式 数组下标引用 函数调用 结构体成员使用 大体上,C语言的操作符具体就这么些, ...