这次我们把上次的结果进行可视化显示,我们会把神经网络的优化过程以图像的方式展示出来,方便我们了解神经网络是如何进行优化的。

首先,我们把测试数据显示出来:

# 显示测试数据
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data) plt.ion()
plt.show()

这里为了能够更加灵活地控制显示的图形,因此增加了subplot,这样方便对其中画出的线进行删除。

plt.ion()开启了交互模式,这样不会使图形显示后一直处于等待状态。

在绘制每一次的拟合曲线中:

        try:
ax.lines.remove(lines[0])
except Exception:
pass lines = ax.plot(x_data, prediction_value, c='r')
plt.pause(0.1)

首先把之前的线进行删除,然后添加预测值的直线段,最后还在屏幕上暂停一下绘制。

这样图形显示为:

完成的代码为:

import tensorflow as tf
import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None):
"""
添加层
:param inputs: 输入数据
:param in_size: 输入数据的列数
:param out_size: 输出数据的列数
:param activation_function: 激励函数
:return:
""" # 定义权重,初始时使用随机变量,可以简单理解为在进行梯度下降时的随机初始点,这个随机初始点要比0值好,因为如果是0值的话,反复计算就一直是固定在0中,导致可能下降不到其它位置去。
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
# 偏置shape为1行out_size列
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 建立神经网络线性公式:inputs * Weights + biases,我们大脑中的神经元的传递基本上也是类似这样的线性公式,这里的权重就是每个神经元传递某信号的强弱系数,偏置值是指这个神经元的原先所拥有的电位高低值
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
# 如果没有设置激活函数,则直接就把当前信号原封不动地传递出去
outputs = Wx_plus_b
else:
# 如果设置了激活函数,则会由此激活函数来对信号进行传递或抑制
outputs = activation_function(Wx_plus_b)
return outputs import numpy as np
# 创建一列(相当于只有一个属性值),300行的x值,这里np.newaxis用于新建出列数据,使其shape为(300, 1)
x_data = np.linspace(-1, 1, 300)[:,np.newaxis]
# 增加噪点,噪点的均值为0,标准差为0.05,形状跟x_data一样
noise = np.random.normal(0, 0.05, x_data.shape)
# 定义y的函数为二次曲线的函数,但同时增加了一些噪点数据
y_data = np.square(x_data) - 0.5 + noise # 显示测试数据
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show() # 定义输入值,这里定义输入值的目的是为了能够使程序比较灵活,可以在神经网络启动时接收不同的实际输入值,这里输入的结构为输入的行数不国定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 定义一个隐藏层,输入为xs,输入size为1列,因为x_data就只有1个属性值,输出size我们假定输出的神经元有10个神经元的隐藏层,激励函数用relu
l1 = add_layer(xs, 1, 10, tf.nn.relu)
# 定义输出层,输入为l1,输入size为10列,也就是l1的列数,输出size为1,因为这里直接输出为类似y_data了,因此为1列,假定没有激励函数,也就是输出是啥就直接传递出去了。
predition = add_layer(l1, 10, 1, activation_function=None) # 定义损失函数为差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - predition), axis=1))
# 进行逐步优化的梯度下降优化器,学习效率为0.1,以最小化损失函数的方式进行优化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 初始化所有定义的变量
init = tf.global_variables_initializer() sess = tf.Session()
sess.run(init) # 学习1000次
for i in range(1000):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
# 打印期间的误差值,看这个误差值是否在减少
if i % 50 == 0:
# print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
prediction_value = sess.run(predition, feed_dict={xs:x_data, ys:y_data})
try:
ax.lines.remove(lines[0])
except Exception:
pass lines = ax.plot(x_data, prediction_value, c='r')
plt.pause(0.1)

在进行绘制图形时,也可以用如下的方式进行:

绘制原始数据的图形:

plt.scatter(x_data, y_data)
plt.ion()
plt.show()

在每个测试步骤中绘制的图形:

        prediction_value = sess.run(predition, feed_dict={xs:x_data, ys:y_data})
try:
plt.axes().lines.remove(lines[0])
except Exception:
pass lines = plt.plot(x_data, prediction_value, c='r')
plt.pause(0.1)

tensorflow结果可视化-【老鱼学tensorflow】的更多相关文章

  1. tensorflow分类-【老鱼学tensorflow】

    前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是 ...

  2. tensorflow安装-【老鱼学tensorflow】

    TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...

  3. tensorflow例子-【老鱼学tensorflow】

    本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律 ...

  4. tensorflow变量-【老鱼学tensorflow】

    在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...

  5. tensorflow激励函数-【老鱼学tensorflow】

    当我们回到家,如果家里有异样,我们能够很快就会发现家中的异样,那是因为这些异常的摆设在我们的大脑中会产生较强的脑电波. 当我们听到某个单词,我们大脑中跟这个单词相关的神经元会异常兴奋,而同这个单词无关 ...

  6. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  7. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

  8. tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】

    之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...

  9. tensorflow保存读取-【老鱼学tensorflow】

    当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: im ...

随机推荐

  1. Nginx 进程间如何共享内存

    L:37 Nginx 针对多进程用的是自旋锁(占用共享内存时间比较短的情况下否则可能会影响性能)注:自旋锁是不停的请求共享内存 而原先的信号量是等待占用者释放后通知等待的进程

  2. Codeforces Round #551 (Div. 2) 题解

    CF1153A 直接做啊,分类讨论即可 #include<iostream> #include<string.h> #include<string> #includ ...

  3. Python【第三篇】文件操作、字符编码

    一.文件操作 文件操作分为三个步骤:文件打开.操作文件.关闭文件,但是,我们可以用with来管理文件操作,这样就不需要手动来关闭文件. 实现原理: import contextlib @context ...

  4. MFC(2):Edit Control 实现自动换行

    --------------------------------------- 设置属性: multiline:  true Auto_HScroll:true Vertical scroll: tr ...

  5. 【Sql Server】SQL SERVER 收缩日志

    事务日志记录着在相关数据库上的操作,同时还存储数据库恢复(recovery)的相关信息. 收缩日志的原因有很多种,有些是考虑空间不足,有些则是应用程序限制导致的. 下面介绍的是在简单模式下,进行收缩操 ...

  6. Entity Framework入门教程(14)---DbFirst下的存储过程

    EF6中DbFirst模式下使用存储过程 我们已经知道EF可以将L2E或Entity SQL的查询语句自动转换成SQL命令,也可以根据实体的状态自动生成Insert/update/delete的Sql ...

  7. Quartz.net 3.x使用总结(二)——Db持久化和集群

    上一篇简单介绍了Quartz.net的概念和基本用法,这一篇记录一下Quartz.net通过数据库持久化Trigger和Jobs等数据,并简单配置Quartz.net的集群. 1.JobStore介绍 ...

  8. C# this扩展方法

    本文导读:扩展方法被定义为静态方法,但它们是通过实例方法语法进行调用的. 它们的第一个参数指定该方法作用于哪个类型,并且该参数以 this 修饰符为前缀. 扩展方法当然不能破坏面向对象封装的概念,所以 ...

  9. requests session operation

    # encoding:utf-8# baseic usage of requests.sessionsimport requestsfrom requests import sessions r = ...

  10. CSS之使用display:inline-block来布局

    css之display:inline-block布局 1.解释一下display的几个常用的属性值,inline , block, inline-block inline(行内元素): 使元素变成行内 ...