AdaBoostRegressor
class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
An AdaBoost regressor.
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.
This class implements the algorithm known as AdaBoost.R2 [2].
Read more in the User Guide.
| Parameters: |
base_estimator : object, optional (default=DecisionTreeRegressor)
n_estimators : integer, optional (default=50)
learning_rate : float, optional (default=1.)
loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)
random_state : int, RandomState instance or None, optional (default=None)
|
|---|---|
| Attributes: |
estimators_ : list of classifiers
estimator_weights_ : array of floats
estimator_errors_ : array of floats
feature_importances_ : array of shape = [n_features]
|
See also
AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor
References
| [R123] | Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995. |
| [R124] |
|
Methods
| fit(X, y[, sample_weight]) | Build a boosted regressor from the training set (X, y). |
| get_params([deep]) | Get parameters for this estimator. |
| predict(X) | Predict regression value for X. |
| score(X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
| set_params(**params) | Set the parameters of this estimator. |
| staged_predict(X) | Return staged predictions for X. |
| staged_score(X, y[, sample_weight]) | Return staged scores for X, y. |
- __init__(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear',random_state=None)[source]
- feature_importances_
-
- Return the feature importances (the higher, the more important the
- feature).
Returns: feature_importances_ : array, shape = [n_features]
- fit(X, y, sample_weight=None)[source]
-
Build a boosted regressor from the training set (X, y).
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like of shape = [n_samples]
The target values (real numbers).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to 1 / n_samples.
Returns: self : object
Returns self.
- get_params(deep=True)[source]
-
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- predict(X)[source]
-
Predict regression value for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : array of shape = [n_samples]
The predicted regression values.
- score(X, y, sample_weight=None)[source]
-
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: score : float
R^2 of self.predict(X) wrt. y.
- set_params(**params)[source]
-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- staged_predict(X)[source]
-
Return staged predictions for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.
This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
Returns: y : generator of array, shape = [n_samples]
The predicted regression values.
- staged_score(X, y, sample_weight=None)[source]
-
Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.
Parameters: X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.
y : array-like, shape = [n_samples]
Labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns: z : float
A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.
[1] - Drucker, “Improving Regressors using Boosting Techniques”, 1997.

print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com>
#
# License: BSD 3 clause # importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor # Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng) regr_1.fit(X, y)
regr_2.fit(X, y) # Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X) # Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()
AdaBoostRegressor的更多相关文章
- scikit-learn Adaboost类库使用小结
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- 壁虎书7 Ensemble Learning and Random Forests
if you aggregate the predictions of a group of predictors,you will often get better predictions than ...
- Adaboost总结
一.简介 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类.为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到 ...
- sklearn-adaboost
sklearn中实现了adaboost分类和回归,即AdaBoostClassifier和AdaBoostRegressor, AdaBoostClassifier 实现了两种方法,即 SAMME 和 ...
- 集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
- Scikit-learn使用总结
在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包.在数据量不是过大的情况下,可以解决大部分问题.学习使用scikit-learn的过程中,我自己也在补充着机器学习和 ...
- Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能 ...
- sklearn10-使用总结
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
随机推荐
- 非常有用的GitHub链接
平常开发工作中,我经常取Github上搜索项目,Clone下来学习使用,在这个过程中,发现了好多比较好的Github地址,记录下来,分享出去. image 非常有用的GitHub链接(顺序不分先后): ...
- Swift3.0 自定义tableView复用cell 的写法,与CollectionViewCell的不同,数据model
Model数据 class HospitalModel: NSObject { //后边不赋值 会报错 var imgurl :String = "" var introducti ...
- RabbitMQ阻塞读取时数据时,关闭channel引起的问题和解决方案
项目场景: 最近在项目中使用了RabbitMq,其中有一个功能必须能随时切断RabbitMq的coumser.第一时间写出来的代码如下: 伪代码: while(flag){ QueueingConsu ...
- 通过EntityFramework来操作MySQL数据库
自己首次用到了EF,为了利人利己,故将自己今天学的记录下来. 这个项目要用到的工具是VS2015.MySQL5.7.12 . 首先我们先建一个解决方案,里面建两个项目分别是Silentdoer.Mai ...
- C#中MessageBox用法大全(转)
我们在程序中经常会用到MessageBox. MessageBox.Show()共有21中重载方法.现将其常见用法总结如下: 1.MessageBox.Show("Hello~~~~&quo ...
- bzoj 2756: [SCOI2012]奇怪的游戏
Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...
- 腾讯云主机 MySQL 远程访问配置方法
使用腾讯云主机安装 MySQL 之后,需要通过以下步骤进行配置以实现远程访问,主要分为两大部分 一.服务器端口配置 1.如果你的云主机配置了安全组,如果没有配置安全组就可以直接跳过“步骤1”的操作,否 ...
- Java基础--二进制运算
1. System.out.println((byte)0x8f); 结果是? 2.System.out.println((byte)(0xc5>>1)); 结果是? 3.System.o ...
- qt中进程的使用
qt中的进程使用需要用到头文件:include<QProcess> 首先来看看需要用到的主要的函数 (1)进程的定义: QProcess *mprocess; //定义一个进程参数 (2) ...
- Linux目录结构详解
/: 根目录,一般根目录下只存放目录,不要存放文件,/etc./bin./dev./lib./sbin应该和根目录放置在一个分区中/bin:/usr/bin: 可执行二进制文件的目录,如常用的命令ls ...