题目链接

  http://acm.hdu.edu.cn/showproblem.php?pid=4686

题目大意

  已知a0=A0,  ai=Ax*ai-1+Ay;

    b0=B0,  bi=Bx*bi-1+By;

  求∑ai*bi(i=0-->n-1)。

  n不超过1018,A0,Ax,Ay,B0,Bx,BY不超过2*109

题目分析

  因为n很大,不可能用递推来做,这个时候就想到了矩阵的方法。构造了好几个满足要求的,但都是仅仅满足ai或者bi的,最后才发现,把ai*bi按递推式展开,

ai*bi=Ax*By*ai-1*bi-1+Ax*By*ai-1+Ay*Bx*bi-1+By*Ay。将常数组合在一起构成一个矩阵,将变量组合在一起构成另一个矩阵,然后将ai*bi构造成矩阵递推式:

矩阵1:

  1  ai  bi  ai*bi  si(求和)

  0  0  0      0     0

  0  0  0      0     0

  0  0  0      0     0

  0  0  0      0     0

矩阵2:

  1  Ay  By  Ay*By  Ay*By

  0  Ax  0    Ax*By  Ax*By

  0  0    Bx  Ay*Bx  Ay*Bx

  0  0    0    Ax*By  Ax*By

  0  0    0    0     1

矩阵3

  1  ai+1  bi+1  ai+1*bi+1  si(求和)

  0  0  0      0     0

  0  0  0      0     0

  0  0  0      0     0

  0  0  0      0     0

显然  矩阵1*矩阵2=矩阵3。根据递推关系呢,矩阵1(i=0)*(矩阵2)n-1就能得到s(n-1)了。因而,用矩阵快速幂就能很快把问题解决了。

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long mod=;
typedef struct
{
long long m[][];
}mat;
mat X,Y;
mat multi(mat x,mat y)
{
mat temp;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
temp.m[i][j]=;
for(int k=;k<;k++)
temp.m[i][j]+=x.m[i][k]*y.m[k][j]%mod;
temp.m[i][j]%=mod;
}
return temp;
} mat pow(long long k)//矩阵快速幂
{
mat ans=X,p=Y;
while(k)
{
if(k&)
ans=multi(ans,p);
p=multi(p,p);
k/=;
}
return ans;
} int main()
{
long long n,a0,ax,ay,b0,bx,by;
while(cin>>n>>a0>>ax>>ay>>b0>>bx>>by)
{
if(!n)//这边需要注意特判一下
{
printf("0\n");
continue;
}
memset(X.m,,sizeof(X.m));
memset(Y.m,,sizeof(Y.m));
X.m[][]=;X.m[][]=a0;X.m[][]=b0;X.m[][]=a0*b0%mod;X.m[][]=a0*b0%mod;
Y.m[][]=;Y.m[][]=ay;Y.m[][]=by;Y.m[][]=ay*by%mod;Y.m[][]=ay*by%mod;
Y.m[][]=ax;Y.m[][]=Y.m[][]=ax*by%mod;
Y.m[][]=bx;Y.m[][]=Y.m[][]=ay*bx%mod;
Y.m[][]=Y.m[][]=ax*bx%mod;
Y.m[][]=;
mat ans=pow(n-);
long long s=ans.m[][]%mod;
cout<<s<<endl;
}
return ;
}

HDU4686

  

HDU4686——Arc of Dream矩阵快速幂的更多相关文章

  1. HDU4686 Arc of Dream 矩阵快速幂

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  2. HDU4686 Arc of Dream —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4686 Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memo ...

  3. hdu----(4686)Arc of Dream(矩阵快速幂)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  4. S - Arc of Dream 矩阵快速幂

    An Arc of Dream is a curve defined by following function: where a 0 = A0 a i = a i-1*AX+AY b 0 = B0  ...

  5. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  6. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  7. HDOJ 4686 Arc of Dream 矩阵高速幂

    矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/ ...

  8. HDU4686 Arc of Dream 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU4686 题意概括 a0 = A0 ai = ai-1*AX+AY b0 = B0 bi = bi-1* ...

  9. hdu 4686 Arc of Dream_矩阵快速幂

    题意:略 构造出矩阵就行了 |   AX   0    AXBY   AXBY       0  |                                                   ...

随机推荐

  1. 在linux下使用百度ueditor编辑器上传图片

    百度ueditor编辑器虽然强大,但是也有不足的地方.如果对ueditor流程不是很熟悉可以说走的弯路比较多,费力不讨好.下面呢,就是要解决ueditor遇到的问题. 用ueditor上传图片遇到的问 ...

  2. [.NET] 一步步打造一个简单的 MVC 网站 - BooksStore(一)

    一步步打造一个简单的 MVC 网站 - BooksStore(一) 本系列的 GitHub地址:https://github.com/liqingwen2015/Wen.BooksStore 简介 主 ...

  3. [UWP]了解模板化控件(3):实现HeaderedContentControl

    1. 概述 来看看这段XMAL: <StackPanel Width="300"> <TextBox Header="TextBox" /&g ...

  4. php调试之路

    解析php中die(),exit(),return的区别 die()停止程序运行,输出内容exit是停止程序运行,不输出内容return是返回值die是遇到错误才停止exit是直接停止,并且不运行后续 ...

  5. 老李推荐:第5章6节《MonkeyRunner源码剖析》Monkey原理分析-启动运行: 初始化事件源

    老李推荐:第5章6节<MonkeyRunner源码剖析>Monkey原理分析-启动运行: 初始化事件源   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试 ...

  6. 玩转 SSH 目录

    在做一个新的项目的时候,需要重新搭建一个项目. 于是趁着这个机会把之前学的几个框架的搭建都写一写,整理一下,同时也可以给大家一些参考.何乐而不为叻. 在这个系列中, 我将使用 IntelJ IDEA ...

  7. Android 学习笔记之 Actionbar作为回到上一级

    首先,给Actionbar添加返回图标: 代码: @Override protected void onCreate(Bundle savedInstanceState) { super.onCrea ...

  8. linux从入门到精通学习-NFS

    NFS网络文件系统 功能 nfs[network file system] 网络文件系统 是FreBSD系统支持的一种系统,允许在网络 上与其它人共享使用文件或文件夹 采用C/S模式 端口号 在vim ...

  9. JavaScript之作用域与闭包总结

    博主最开始接触程序是C语言,C++,后来是java,现在是php,无论哪一种语言与javascript在机制上都还是有比较大的区别. 下面总结一下用面向对象的思想写javascript需要区分的要点: ...

  10. php基础知识(二)---2017-04-14

    1.字符串的三种表达形式: (1)双引号 (2)单引号 (3)尖括号 $s = <<<A <div style="width:500px; height:100px; ...