CDN架构以及原理分析
详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp61
在不同地域的用户访问网站的响应速度存在差异,为了提高用户访问的响应速度、优化现有Internet中信息的流动,需要在用户和服务器间加入中间层CDN. 使用户能以最快的速度,从最接近用户的地方获得所需的信息,彻底解决网络拥塞,提高响应速度,是目前大型网站使用的流行的应用方案.
1. CDN 概述
- CDN的全称是Content Delivery Network,即内容分发网络。其目的是通过在现有的Internet中增加一层新的CACHE(缓存)层,将网站的内容发布到最接近用户的网络"边缘"的节点,使用户可以就近取得所需的内容,提高用户访问网站的响应速度。从技术上全面解决由于网络带宽小、用户访问量大、网点分布不均等原因,提高用户访问网站的响应速度。
- Cache层的技术,消除数据峰值访问造成的结点设备阻塞。Cache服务器具有缓存功能,所以大部分网页对象(Web page object),如html, htm, php等页面文件,gif,tif,png,bmp等图片文件,以及其他格式的文件,在有效期(TTL)内,对于重复的访问,不必从原始网站重新传送文件实体, 只需通过简单的认证(Freshness Validation)- 传送几十字节的Header,即可将本地的副本直接传送给访问者。由于缓存服务器通常部署在靠近用户端,所以能获得近似局域网的响应速度,并有效减少广域带宽的消耗。不仅能提高响应速度,节约带宽,对于加速Web服务器,有效减轻源服务器的负载是非常有效的。
- 根据加速对象不同,分为 客户端加速 和 服务器加速
- 客户端加速 : Cache部署在网络出口处,把常访问的内容缓存在本地,提高响应速度和节约带宽;
- 服务器加速 : Cache部署在服务器前端,作为Web服务器的代理缓存机,提高Web服务器的性能,加速访问速度
如果多台Cache加速服务器且分布在不同地域,需要通过有效地机制管理Cache网络,引导用户就近访问(比如通过DNS引导用户),全局负载均衡流量,这是CDN内容传输网络的基本思想.
- CDN对网络的优化作用主要体现在如下几个方面 - 解决服务器端的“第一公里”问题 - 缓解甚至消除了不同运营商之间互联的瓶颈造成的影响 - 减轻了各省的出口带宽压力 - 缓解了骨干网的压力 - 优化了网上热点内容的分布
2. CDN 的工作原理
2.1. 传统访问过程(未加速缓存服务)
我们先看传统的未加缓存服务的访问过程,以便了解CDN缓存访问方式与未加缓存访问方式的差别:

由上图可见,用户访问未使用CDN缓存网站的过程为:
- 用户输入访问的域名,操作系统向 LocalDns 查询域名的ip地址.
- LocalDns向 ROOT DNS 查询域名的授权服务器(这里假设LocalDns缓存过期)
- ROOT DNS将域名授权dns记录回应给 LocalDns
- LocalDns得到域名的授权dns记录后,继续向域名授权dns查询域名的ip地址
- 域名授权dns 查询域名记录后,回应给 LocalDns
- LocalDns 将得到的域名ip地址,回应给 用户端
- 用户得到域名ip地址后,访问站点服务器
- 站点服务器应答请求,将内容返回给客户端.
2.2. CDN访问过程(使用缓存服务)
CDN网络是在用户和服务器之间增加Cache层,主要是通过接管DNS实现,将用户的请求引导到Cache上获得源服务器的数据
下面让我们看看访问使用CDN缓存后的网站的过程:

通过上图,我们可以了解到,使用了CDN缓存后的网站的访问过程变为:
- 用户输入访问的域名,操作系统向 LocalDns 查询域名的ip地址.
- LocalDns向 ROOT DNS 查询域名的授权服务器(这里假设LocalDns缓存过期)
- ROOT DNS将域名授权dns记录回应给 LocalDns
- LocalDns得到域名的授权dns记录后,继续向域名授权dns查询域名的ip地址
- 域名授权dns 查询域名记录后(一般是CNAME),回应给 LocalDns
- LocalDns 得到域名记录后,向智能调度DNS查询域名的ip地址
- 智能调度DNS 根据一定的算法和策略(比如静态拓扑,容量等),将最适合的CDN节点ip地址回应给 LocalDns
- LocalDns 将得到的域名ip地址,回应给 用户端
- 用户得到域名ip地址后,访问站点服务器
- CDN节点服务器应答请求,将内容返回给客户端.(缓存服务器一方面在本地进行保存,以备以后使用,二方面把获取的数据返回给客户端,完成数据服务过程)
通过以上的分析我们可以得到,为了实现对普通用户透明(使用缓存后用户客户端无需进行任何设置)访问,需要使用DNS(域名解析)来引导用户来访问Cache服务器,以实现透明的加速服务. 由于用户访问网站的第一步就是 域名解析 ,所以通过修改dns来引导用户访问是最简单有效的方式.
2.3. CDN网络的组成要素
对于普通的Internet用户,每个CDN节点就相当于一个放置在它周围的网站服务器.
通过对dns的接管,用户的请求被透明地指向离他最近的节点,节点中CDN服务器会像网站的原始服务器一样,响应用户的请求.
由于它离用户更近,因而响应时间必然更快.
从上面图中 虚线圈起来的那块,就是CDN层,这层是位于 用户端 和 站点服务器之间.
- 智能调度DNS(比如f5的3DNS)
智能调度DNS是CDN服务中的关键系统.当用户访问加入CDN服务的网站时,域名解析请求将最终由 智能调度DNS 负责处理.
它通过一组预先定义好的策略,将当时最接近用户的节点地址提供给用户,使用户可以得到快速的服务.
同时它需要与分布在各地的CDN节点保持通信,跟踪各节点的健康状态,容量等,确保将用户的请求分配到就近可用的节点上. - 缓存功能服务
- 负载均衡设备(如lvs,F5的BIG/IP)
- 内容Cache服务器(如squid)
- 共享存储(根据缓存数据量多少决定是否需要)
3. CDN 智能调度Dns 实例分析
- 分析img.alibaba.com域名
在系统中,执行dig命令,输出如下:
#dig img.alibaba.com ; 部分省略 ;; QUESTION SECTION:
;img.alibaba.com. IN A ;; ANSWER SECTION:
img.alibaba.com. 600 IN CNAME img.alibaba.com.edgesuite.net.
img.alibaba.com.edgesuite.net. 7191 IN CNAME img.alibaba.com.georedirector.akadns.net.
img.alibaba.com.georedirector.akadns.net. 3592 IN CNAME a1366.g.akamai.net.
a1366.g.akamai.net. 12 IN A 204.203.18.145
a1366.g.akamai.net. 12 IN A 204.203.18.160 ; 部分省略从上面查询结果可以看出 img.alibaba.com. CNAME img.alibaba.com.edgesuite.net. 后面的CNAME是由 Akamai(CDN服务商) 去跳转到 智能调度器上的.
- 分析www.discovery.com域名
在系统中,继续执行dig命令,输出如下:
#dig www.discovery.com ; 部分省略 ;; QUESTION SECTION:
;www.discovery.com. IN A ;; ANSWER SECTION:
www.discovery.com. 1077 IN CNAME www.discovery.com.edgesuite.net.
www.discovery.com.edgesuite.net. 21477 IN CNAME a212.g.akamai.net.
a212.g.akamai.net. 20 IN A 204.203.18.154
a212.g.akamai.net. 20 IN A 204.203.18.147 ; 部分省略从上面查询结果可以看出 www.discovery.com. IN CNAME www.discovery.com.edgesuite.net. 后面的CNAME是由 Akamai(CDN服务商) 去跳转到 智能调度器上的.
总结:一般来说,网站需要使用到CDN服务时,一般都是将需要加速访问的域名 CNAME到 CDN服务商的域名上.
缓存服务和调度功能都是由服务商来完成.
4. CDN的 智能调度Dns 简化实现
4.1. 调度策略说明
在用户请求解析域名的时候,智能DNS判断用户的LocalDns的IP,然后跟DNS服务器内部的IP表范围匹配一下,看看用户是电信还是网通用户,然后给用户返回对应的IP地址
这里使用的是静态拓扑的方法,只是判断LocalDns的IP.要想使用更复杂的调度算法可以考虑商业产品,如F5的3DNS.
4.2. 假设CDN节点规划
在这里我们将使用 BIND 的View功能来实现运营商的区分,假设我们在每个运营商的机房都放有一个CDN节点,列表如下:
| www.cdntest.com | 网通(CNC) | 192.168.0.1 |
| www.cdntest.com | 电信(TELECOM) | 192.168.0.2 |
| www.cdntest.com | 教育网(EDU) | 192.168.0.3 |
| www.cdntest.com | 默认(ANY) | 192.168.0.4 |
4.3. bind view 配置
- 以下是named.conf配置文件的部分截取,只是涉及到 View 的部分,其他细节可参考互联网.
acl "cnc_iprange"{ //定义ip范围(网通)
192.168.1.0/24;
192.168.2.0/24;
//此处只是示例,其他省略
}; acl "tel_iprange"{ //定义ip范围(电信)
192.168.3.0/24;
192.168.4.0/24;
//其他省略
}; acl "edu_iprange"{ //定义ip范围(教育网)
192.168.5.0/24;
192.168.6.0/24;
//其他省略
}; acl "default_iprange"{ //定义ip范围(默认)
192.168.7.0/24;
192.168.8.0/24;
//其他省略
}; view "CNC" {
Match-clients{cnc_iprange};
zone "." IN {
type hint;
file "named.root";
}; zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };
}; zone "cdntest.com" IN {
type master;
file "cnc_cdntest.zone";
};
}; view "TEL" {
Match-clients{tel_iprange};
zone "." IN {
type hint;
file "named.root";
}; zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };
}; zone "cdntest.com" IN {
type master;
file "tel_cdntest.zone";
};
}; view "EDU" {
Match-clients{edu_iprange};
zone "." IN {
type hint;
file "named.root";
}; zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };
}; zone "cdntest.com" IN {
type master;
file "edu_cdntest.zone";
};
}; view "DEFAULT" {
Match-clients{default_iprange};
zone "." IN {
type hint;
file "named.root";
}; zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };
}; zone "cdntest.com" IN {
type master;
file "default_cdntest.zone";
};
}; - zone文件的配置说明
这4个zone配置文件(cnc_cdntest.zone,tel_cdntest.zone,edu_cdntest.zone,default_cdntest.zone)中,只有www.cndtest.com的A记录不一样,其他的都是一样.
| www.cdntest.com | cnc_cdntest.zone | 192.168.0.1 |
| www.cdntest.com | tel_cdntest.zone | 192.168.0.2 |
| www.cdntest.com | edu_cdntest.zone | 192.168.0.3 |
| www.cdntest.com | default_cdntest.zone | 192.168.0.4 |
以上只列出了 www.cdntest.com 的A记录地址,其他关于zone的语法 请参考互联网.
- 域名解析流程简要说明
- 用户向 LocalDns 查询域名 www.cdntest.com
- LocalDns 向 授权DNS 查询www.cdntest.com
- 授权DNS 判断用户使用的 LocalDns的ip地址,匹配上述设置的ip范围,如果范围在网通,就将网通对应的ip地址(192.168.0.1),回应给LocalDns(其他依此类推)
- LocalDns 将得到的域名ip地址,回应给 用户端 (域名解析完成)
说明:再此过程中,我们简化了主DNS 到 智能DNS 之间的CNAME过程(为了简要说明问题).
这里使用的是静态拓扑(根据ip范围)的方法,也称为地域化方法,只是判断LocalDns的IP.
- 此简化方案中的存在的问题
- 如果用户设置错误的dns,可能会导致用户访问比原来慢(比如网通用户设置了电信的DNS)
- 不能判断CDN节点服务器的健康状态和容量状态,可能会把用户定向到不可用的CDN节点
- 由于静态拓扑方法,可能存在用户访问的CDN节点不是最优化和最快的
- .....可能还有其他想不到的....
5. 总结(Summary)
在建立CDN网路时,最关键的就是 智能调度DNS,这个是CND网络总协调,通过高效的调度算法,可以使用户得到最佳的访问体验.
其次就是 CND节点的管理,比如涉及到 内容的同步机制,配置文件的更新等等,都需要有一套机制来保证.
当然在大型网站中,也要考建设CDN体系的成本和回报率.
转自:http://www.51know.info/system_performance/cdn/cdn.html
CDN架构以及原理分析的更多相关文章
- Apache Flink:特性、概念、组件栈、架构及原理分析
2016-04-30 22:24:39 Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtim ...
- gsensor架构和原理分析【转】
本文转载自:http://blog.csdn.net/u012296694/article/details/48055491 本文主要描述了在android2.3平台G-sensor相关软硬件的体系架 ...
- NVIDIA GPU架构与原理分析(一)——GPU简介与主流Fermi、Kepler架构GPU概述
1 GPU简介 图形处理单元GPU英文全称Graphic Processing Unit,GPU是相对于CPU的一个概念,NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GP ...
- Ceph 架构以及原理分析
一.架构 Ceph在一个统一的系统中独特地提供对象,块和文件存储. Ceph高度可靠,易于管理且免费. Ceph的强大功能可以改变您公司的IT基础架构以及管理大量数据的能力. Ceph提供了非凡的可扩 ...
- dubbo源码解析五 --- 集群容错架构设计与原理分析
欢迎来我的 Star Followers 后期后继续更新Dubbo别的文章 Dubbo 源码分析系列之一环境搭建 博客园 Dubbo 入门之二 --- 项目结构解析 博客园 Dubbo 源码分析系列之 ...
- springMVC课程笔记(一)springMVC架构原理分析
一.springMVC架构原理分析 1.先搞清楚什么是springMVC: 其实springMVC是spring框架中的一个模块,springMVC和spring无需通过中间整合层整合,SpringM ...
- 简化的CDN架构分析
CDN架构的设计目标是通过复制系统资源(即Web服务器)的方式来获得高性能和高扩展性,为了能确保在海量内容下可以稳定提供高性能的服务.系统资源的复制可以在本地和地理两个尺度上进行.如果是本地复制则响应 ...
- Linux就业技术指导(四):企业CDN缓存加速原理解密
1.1 CDN(网站加速) 1.1.1 什么是CDN CDN的全称Content Delivery Network,即内容分发网络.其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和 ...
- QQ视频直播架构及原理 流畅与低延迟之间做平衡 音画如何做同步?
QQ视频直播架构及原理 - tianyu的专栏 - CSDN博客 https://blog.csdn.net/wishfly/article/details/53035342 作者:王宇(腾讯音视频高 ...
随机推荐
- 初识 tk.mybatis.mapper
在博客园发表Mybatis Dynamic Query后,一位园友问我知不知道通用mapper,仔细去找了一下,还真的有啊,比较好的就是abel533写的tk.mybatis.mapper. 本次例子 ...
- 头文件string.h里的函数
.strcpy 函数名: stpcpy 功 能: 拷贝一个字符串到另一个 用 法: char *stpcpy(char *destin, char *source); 程序例: #include &l ...
- python中的类属性和实例属性
属性就是属于一个对象的数据或者函数,我们可以通过句点(.)来访问属性,同时 Python 还支持在运作中添加和修改属性. 我们先来看看类里面的普通字段: class Test(object): nam ...
- 使用Travis CI自动部署Hexo博客
自从使用GitHub Pages和Hexo来发布博客之后,不得不说方便了许多,只需要几个简单的命令博客就发布了.但在不断的使用中发现每次的发布操作也挺耗时的. 我一般的操作是将平时整理好的md文件放到 ...
- ARP与RARP协议及arp脚本
1.什么是ARP与RARP协议 地址解析协议,即ARP(Address Resolution Protocol),是根据IP地址获取物理地址的一个TCP/IP协议. 在⽹络通讯时,源主机的应⽤程序知道 ...
- [NOIP 2010]饮水入城 搜索+贪心
考试的时候写了个dfs找出来了,最后处理的时候想到了贪心,但是正确性没有想通.然后想了想动规,也没想通.最后没办法,用状态的话用了个状压,弄了40分. 正解是bfs+贪心.Dfs也有过的. 下面题解引 ...
- windows 2008 VPN(PPTP/L2TP)搭建
PPTP和L2TP只差一步配置,现在苹果已经不支持PPTP,所以只能使用L2TP连接.废话不多说,下面开始搭建: 1.PPTP VPN 配置 新安装好的OS,进入系统,首先添加角色 勾选添加网络策略和 ...
- 【NO.11】Jmeter - 构建1个可供Linux使用的Jmeter测试脚本 - 共3个步骤
在Linux使用Jmeter做性能测试需要4个前提条件,这4个前提条件已经在之前的文档里提到了,重复一下加深印象: (1) 在本地已安装xshell 参考<SecureCRT-转换密钥-Xshe ...
- 关于excel的导入导出
目前为方便操作,很多系统都增加了批量导入导出的功能.文件导入导出一般的格式都是excel,现将常用设计用例总结如下: 批量导入 一.模板检查检测:一般excel导入,都会提供模板下载功能 1.模板 ...
- “margin塌陷” 嵌套盒子外边距合并现象
来源于官方文档对于外边距合并的解释: 注释:只有普通文档流中块框的垂直外边距才会发生外边距合并.行内框.浮动框或绝对定位之间的外边距不会合并. 出现外边距塌陷的三种情况: 1.相邻兄弟元素之间 若两者 ...